Property Relation S.J.T.U. Phase Transformation and Applications aU dU=Tds-Pdv =T =-P dF =-SdT-Pav =-S S-P dG =-SaT +Vap =-S =V dH Tas +Vap =T OP ov 二 as aP)s as as at ap SJTU Thermodynamics of Materials Spring 2010 ©X.J.Jin Lecture 6 Property Relation ll
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2010 © X. J. Jin Lecture 6 Property Relation II Property Relation S S V P V T S S P V P T T T V P V S T T P V P S dU TdS PdV dF SdT PdV dG SdT VdP dH TdS VdP P V U T S U V S P V F S T F V T V P G S T G P T V P H T S H P S
恒温下熵变的计算(1) S.J.T.U. Phase Transformation and Applications s-s-fs=器 dp p.65,2.13 EX:ideal gas R PV-RT 器)- dS=- R P 恒温下,当压力改变时,将引起熵变 For a change in pressure from 1 atm to 10 atm at constant pressure. AS--fRP--RIn P--RIn10--19.14J/(mol-K) SJTU Thermodynamics of Materials Spring2010©X.J.Jin Lecture 6 Property Relation ll
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2010 © X. J. Jin Lecture 6 Property Relation II 恒温下熵变的计算(1) T T P V P S 2 1 2 1 2 1 P P P dP T V S S d S EX: ideal gas dP P R dS P R P S P R T V PV RT P T For a change in pressure from 1 atm to 10 atm at constant pressure. R P R J mol K P dP S R P P ln ln10 19.14 / 1 0 1 2 1 恒温下,当压力改变时,将引起熵变 p.65, 2.13
恒温下熵变的计算(③) S.J.T.U. Phase Transformation and Applications as s-s=∫s) dp EX:solid the volumetric thermal expansion coefficient, =Vav For a change in pressure from 1 atm to 10 atm at constant pressure.The molar volume and volumetric thermal expansion coefficient are constant over the pressure range of interest. AS=-fVaydP--Var(P-P)=-9Vap SJTU Thermodynamics of Materials Spring 2010 ©X.J.Jin Lecture 6 Property Relation ll
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2010 © X. J. Jin Lecture 6 Property Relation II 恒温下熵变的计算(3) T T P V P S 2 1 2 1 2 1 P P P dP T V S S d S EX: solid the volumetric thermal expansion coefficient, For a change in pressure from 1 atm to 10 atm at constant pressure. The molar volume and volumetric thermal expansion coefficient are constant over the pressure range of interest. V V P P S VV dP V (P2 P1 ) 9V 2 1 V V P P V V T V T V V 1