统计热力学基础:经典与统计 S.J.T.U. Phase Transformation and Applications Page 6/66 经典热力学 研究热现象基本规律的宏观理论,所研究对象是含有大量粒子的平衡体 系,是以在经验或实验数据基础上总结出的的三个定律为基础,利 用反应热、热容、熵等热力学函数,研究平衡体系各宏观性质之间 的相互关系,进而预示过程自动进行的方向和可能性。 统计热力学 研究热现象基本规律的微观理论,其研究对象仍是由大量微观粒子(包 括分子、原子和离子等)所组成的体系。 !从体系内部粒子的微观运动性质及结构数据出发,以粒子普遍遵循的 力学定律为基础,用统计的方法直接推求大量粒子运动的统计平均 结果,以得到平衡体系各种宏观性质的具体数值。 SJTU Thermodynamics of Materials Spring 2008 ©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 6/66 统计热力学基础:经典与统计 • 经典热力学 研究热现象基本规律的宏观理论,所研究对象是含有大量粒子的平衡体 系,是以在经验或实验数据基础上总结出的的三个定律为基础,利 用反应热、热容、熵等热力学函数,研究平衡体系各宏观性质之间 的相互关系,进而预示过程自动进行的方向和可能性。 • 统计热力学 研究热现象基本规律的微观理论,其研究对象仍是由大量微观粒子(包 括分子、原子和离子等)所组成的体系。 !从体系内部粒子的微观运动性质及结构数据出发,以粒子普遍遵循的 力学定律为基础,用统计的方法直接推求大量粒子运动的统计平均 结果,以得到平衡体系各种宏观性质的具体数值
统计热力学基础:经典与统计 S.J.T.U. Phase Transformation and Applications Page 7/66 统计热力学:经典统计/量子统计 服从经典力学规律的微观粒子组成的体系称为经典粒子体系。 服从量子力学规律的微观粒子组成的体系称为量子粒子体系。 经典力学 “组合分析”理论和系综理论 同种粒子彼此可分辨 量子力学 Fermi-Dirac和Bose-Einstain以及系综理论 无法对全同粒子编号 SJTU Thermodynamics of Materials Spring 2008( X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 7/66 统计热力学基础:经典与统计 统计热力学:经典统计/量子统计 服从经典力学规律的微观粒子组成的体系称为经典粒子体系。 服从量子力学规律的微观粒子组成的体系称为量子粒子体系。 经典力学 “组合分析”理论和系综理论 同种粒子彼此可分辨 量子力学 Fermi-Dirac和Bose-Einstain以及系综理论 无法对全同粒子编号
Average Velocity of Gas Molecules S.J.T.U. Phase Transformation and Applications Page 8/66 Monatomic,ideal gas in equilibrium with its pressure and temperature PV =nRT Cv 3 R 2 SJTU Thermodynamics of Materials Spring 2008( X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 8/66 Average Velocity of Gas Molecules V RC 23 = Monatomic, ideal gas in equilibrium with its pressure and temperature = nRTPV
宏观态、微观态 S.J.T.U. Phase Transformation and Applications Page 9/66 宏观态 体系的状态由几个状态参数如温度、体积和内能来描述。 An isolated system at equilibrium at a given volume. ·微观态 需表征体系中所有粒子的状态,如所有分子的能量和速度。 Specify the position and velocity of all of the molecules in the system The rate of motion of molecules in air at macroscopic equilibrium v2=3kT/m=23.4×104m2/S2 v=483m/S SJTU Thermodynamics of Materials Spring 2008 ©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 9/66 宏观态、微观态 • 宏观态 体系的状态由几个状态参数如温度、体积和内能来描述。 An isolated system at equilibrium at a given volume. • 微观态 需表征体系中所有粒子的状态,如所有分子的能量和速度。 Specify the position and velocity of all of the molecules in the system 2 224 mkTv ×== /104.23/3 Sm = /483 Smv The rate of motion of molecules in air at macroscopic equilibrium
动态平衡 S.J.T.U. Phase Transformation and Applications Page 10/66 In order to compute the macroscopic average of a property .The property of each microstate .Which microstates the system can be in .The probability that the system will be in a given microstate Macrostate: stating the total number of particles in Macroscopic each box yields pressure Microstate: each way of realizing a given macro distribution Instantaneous pressure Each macrostate may be realized by a number of microstates Time> Figure 10.2 Instantaneous gas pressure as a function of time.(The magnitude of the variation of instantaneous gas pressure is exag- gerated for emphasis.) SJTU Thermodynamics of Materials Spring2008©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 10/66 动态平衡 In order to compute the macroscopic average of a property •The property of each microstate •Which microstates the system can be in •The probability that the system will be in a given microstate Macrostate: stating the total number of particles in each box yields Microstate: each way of realizing a given macro distribution Each macrostate may be realized by a number of microstates