Contents of Today S.J.T.U. Phase Transformation and Applications Page 1/66 Review previous Macro-states and Micro-states Boltzman Hypothesis and the Third Law Boltzman Distribution Partition Function Ideal Gas etc. SJTU Thermodynamics of Materials Spring2008©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 1/66 Contents of Today Review previous Macro-states and Micro-states Boltzman Hypothesis and the Third Law Boltzman Distribution Partition Function Ideal Gas etc
统计热力学Contents S.J.T.U. Phase Transformation and Applications Page 2/66 统计热力学概述 Boltzmann假定、分布和配分函数 熵的统计概念/第二定律 热力学第三定律 理想气体的状态方程 晶体的热容 聚合物溶液的混合嫡 SJTU Thermodynamics of Materials Spring 2008 ©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 2/66 统计热力学Contents 统计热力学概述 Boltzmann假定、分布和配分函数 熵的统计概念/第二定律 热力学第三定律 理想气体的状态方程 晶体的热容 聚合物溶液的混合熵
Nomenclature S.J.T.U. Phase Transformation and Applications Page 3/66 Macroscopic thermodynamics microscopic thermodynamics/statistical thermodynamics Root-mean-square/average rate of motion Macrosate/Microstate:宏观态/微观态 The time average of the properties of a system is equivalent to the instantaneous average over the ensemble of the microstates available to the system. SJTU Thermodynamics of Materials Spring2008©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 3/66 Nomenclature Macroscopic thermodynamics microscopic thermodynamics/statistical thermodynamics Root-mean-square / average rate of motion Macrosate / Microstate:宏观态/微观态 The time average of the properties of a system is equivalent to the instantaneous average over the ensemble of the microstates available to the system
Nomenclature (2) S.J.T.U. Phase Transformation and Applications Page 4/66 Ensemble:系综 Microcanonical/canonical/macrocanonical:微/正则/巨 Degeneracy:简并度 Partition function:配分函数 David V.Ragone,Thermodynamics of Materials,John Wiley Sons,Inc.,1995,Vol.I,Chap 10 &Vol.II,Chap 2.. 江伯鸿,材料热力学,上海交通大学出版社,1999,第八章 徐祖耀,李麟,材料热力学,科学出版社,2000,第九第十章 SJTU Thermodynamics of Materials Spring2008©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 4/66 Nomenclature (2) Ensemble:系综 Microcanonical / canonical / macrocanonical:微/正则/巨 Degeneracy:简并度 Partition function:配分函数 David V. Ragone, Thermodynamics of Materials, John Wiley & Sons, Inc., 1995, Vol. I, Chap 10 &Vol. II, Chap 2.. 江伯鸿,材料热力学,上海交通大学出版社,1999,第八章 徐祖耀,李麟,材料热力学,科学出版社,2000,第九第十章
统计热力学 S.J.T.U. Phase Transformation and Applications Page 5/66 ·统计热力学 统计平均的方法研究大量微观粒子的力学行为,将统计力学应用于研 究热力学体系的宏观性质及其规律 统计热力学寻求的是在一定条件下对一切可能的微观运动状态的统计 平均值。 宏观世界 统计热力学 微观世界 (热力学) (量子力学) SJTU Thermodynamics of Materials Spring 2008 ©X.J.Jin Lecture 19 Statistical
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2008 © X. J. Jin Lecture 19 Statistical Page 5/66 统计热力学 • 统计热力学 统计平均的方法研究大量微观粒子的力学行为,将统计力学应用于研 究热力学体系的宏观性质及其规律 统计热力学寻求的是在一定条件下对一切可能的微观运动状态的统计 平均值。 宏观世界 (热力学) 微观世界 (量子力学) 统计热力学