Substitution of 2 3into eq (1) yields: 将 代入方程(1)得: u; Xi yi1 u yi u= 1/2A u; X +1 j Yi x+1 y 1/2A1 Xiyi ym y 1 X Yi 1 X, yi u=Ni(x, y)u;+N(x, y)ui+ Nm(x, y)um V=N(x, y);+N(x, y)Vi+ Nm(x, y) vm 徐汉忠第一版2000/7 弹性力学第六章有限元
徐汉忠第一版2000/7 弹性力学第六章有限元 26 Substitution of 1 2 3 into eq. (1) yields: 将 1 2 3代入方程(1)得: ui xi yi 1 ui yi 1 xi ui u = 1/2A uj xj yj + 1 uj yj x + 1 xj u j y um xm ym 1 um ym 1 xm um 1 x y 1 x y 1 x y = 1/2A 1 xj yj ui + 1 xm ym uj+ 1 xi y i um 1 xm ym 1 xi yi 1 xj yj u = Ni (x,y) ui +Nj (x,y) uj + Nm(x,y) um v = Ni (x,y) vi +Nj (x,y) vj + Nm(x,y) vm
In which 其中:Nxy)=1xy yj Xm y y (ai+b; x+c y)/(2A) (i,j, m) a Xivm Xmy 1 ym=yim := 1 X=xm-x yi 2A=1x 徐汉忠第一版2000/7 弹性力学第六章有限元 27
徐汉忠第一版2000/7 弹性力学第六章有限元 27 In which: 1 x y 1 xi yi 其中: Ni (x,y)= 1 xj yj 1 xj yj 1 xm ym 1 xm ym = (ai+bix+ciy) /(2A) (i,j,m) xj yj 1 yj ai= xm ym = xjym-xmyj bi= - 1 ym =yj -ym 1 xj ci= 1 xm =xm-xj (i,j,m) 1 xi yi 2A = 1 xj yj 1 xm ym
i is called element displacement function or element shape function N;叫做单元位移函数或单元形函数。 N xi yi=1 N(Xiyi=0 N(xm ym=0 (i,j, m) 1 x y N;(x, y)=1 X m vm m 徐汉忠第一版2000/7 弹性力学第六章有限元
徐汉忠第一版2000/7 弹性力学第六章有限元 28 Ni is called element displacement function or element shape function. Ni 叫做单元位移函数或单元形函数。 Ni (xi ,yi )=1 Ni (xj ,yj )=0 Ni (xm,ym)=0 (i,j,m) 1 x y 1 xi yi Ni (x,y)= 1 xj yj 1 xj yj 1 xm ym 1 xm ym
u=Ni(x,yu;+Ni(x,y)ui+Nm(x,y)um V =Ni(x,y)Vi+Ni(x,y)vi+Nm(x,y)Vm {f}=|N{8}° }={uv nodal displacement matrix:结点位移列阵: ⑧6}={u;v1 u; vi umamI shape function matrix:形函数矩阵: N:0N:0N0 N 0N;0N:0N, 有限个自由度问题 徐汉忠第一版2000/7 弹性力学第六章有限元
徐汉忠第一版2000/7 弹性力学第六章有限元 29 u = Ni (x,y) ui +Nj (x,y) uj + Nm(x,y) um v = Ni (x,y) vi +Nj (x,y) vj + Nm(x,y) vm {f } = [N]{ } e {f}=[u v]T nodal displacement matrix:结点位移列阵: { } e=[ui vi uj vj um vm] T shape function matrix: 形函数矩阵: Ni 0 Nj 0 Nm 0 [N] = 0 Ni 0 Nj 0 Nm 有限个自由度问题
Convergence Criteria收敛准则-1 Criterion 1: The displacement function chosen should be such that it does not permit straining of an element to occur when the nodal displacements are caused by a rigid body displacement. 准则1:位移模式必须反映单元的刚体位 移 徐汉忠第一版2000/7 弹性力学第六章有限元
徐汉忠第一版2000/7 弹性力学第六章有限元 30 Convergence Criteria 收敛准则---1 • Criterion 1: The displacement function chosen should be such that it does not permit straining of an element to occur when the nodal displacements are caused by a rigid body displacement. • 准则1:位移模式必须反映单元的刚体位 移