3、旋转图形的实例:
3、旋转图形的实例: O F A B C D E
三、轴对称 1.轴对称的概念:如果两个平面图形沿一 条直线对折后能够完全重合,那么称这两 个图形成轴对称
三、轴对称 1.轴对称的概念:如果两个平面图形沿一 条直线对折后能够完全重合,那么称这两 个图形成轴对称
2轴对称的图形实例
2.轴对称的图形实例 C B A B1 C1 A1 N M
轴对称、平移、旋转的区别及联系: 变换描述变位方大形状相关性质及作 名称换的要置向小 图方法 素 轴对对称轴 改 称(反射) 变 平移平移方向,改不不不 距离变变变变① 旋转旋转中心,改 方向角度 变 :::::
变换 名称 描述变 换的要 素 位 置 方 向 大 小 形状 相关性质及作 图方法 轴对 称(反射) 平移 旋转 改 变 不 变 不 变 对称轴 平移方向, 距离 旋转中心, 方向,角度 改 变 不 变 改 变 轴对称、平移、旋转的区别及联系:
四、中心对称 如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就 说这两个图形关于这个点对称或中心对称( central symmetry),这个点叫做它 们的对称中心( centre of symmetry).如图3-20,△ABC与△ABC成中心对 称,点O是它们的对称中心 把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合, 那么这个图形叫做中心对称图形,这个点叫做它的对称中心
四、中心对称