数据挖掘在安钢电极预测建模中的应用

从安钢电极控制的实际应用出发,应用数据挖掘技术建立了电极预测模型并应用于电极控制系统的参数整定.首先介绍了建立电极预测模型的数据挖掘过程;然后在数据挖掘算法中提出了一种新的变结构遗传Elman网络方法,该算法用改进的混合遗传算法对网络结构和权值及自反馈增益同步动态寻优.将基于BP算法的Elman网络和本文提出的变结构遗传Elman网络都应用于安钢交流电弧炉的电极预测模型中进行比较.通过基于安钢现场数据的计算机仿真实验表明:采用变结构遗传Elman网络的数据挖掘算法比BP算法具有更好的动态性能、更快的逼近速度和更高的精度.在此基础上,把建立的模型应用于安钢电极控制系统的参数整定,取得了良好的控制效果.
文件格式:PDF,文件大小:770.26KB,售价:2.16元
文档详细内容(约6页)
点击进入文档下载页(PDF格式)
共6页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录