后付年金现值公式推导 0 2 3 n-1 AA A A(1+i)-1 A(1+i)-2 A(1+i)·(n1) A(1+i-n
0 1 2 3 n-1 n A A …… A A A(1+i)-n A(1+i)-(n-1) …… A(1+i)-2 A(1+i)-1 后付年金现值公式推导
n期年金的现值可以分解为m个复利现值之和 v≡A(1+D1+A(1+)2..+A(1+D (1) (1)式两边同时乘以(1+D得: v(1+=A(1+0+A(1+D-1+…+A(1+D-(m1)(2) (2)式减去(1)式得: v(1+D-V=A(1+0A(1+D v=A×[1-(1+D小÷i= AX PVTFA,n
n 期年金的现值可以分解为n个复利现值之和 V0 =A(1+i)-1+ A(1+i)-2 …+A(1+i)- n (1) (1)式两边同时乘以(1+i)得: V0(1+i)= A (1+i)0 + A(1+i)-1 + … +A(1+i)- (n-1) (2) (2)式减去(1)式得: V0(1+i)- V0= A(1+i)0-A(1+i)-n V0 = A × [1-(1+i)- n ]÷i =A×PVIFA i , n
先付年金终值公式推导 0 n-1 n A A(1+D A(1+D A(1+D A(1+D
先付年金终值公式推导 0 1 2 3 n-1 n A A A …… A A(1+i) A(1+i) A(1+i) A(1+i)
先付年金终值公式推导 v=A(刊×FWFA1,n
先付年金终值公式推导 Vn = A(1+i) ×FVIFA i , n
先付年金现值公式推导 0 n-1 n A A(1+D A(1+D A(1+D A(1+D
先付年金现值公式推导 0 1 2 3 n-1 n A A A …… A A(1+i) A(1+i) A(1+i) A(1+i)