Stiffness of Perfect Elastic SolidsIsothermal and perfect elasticity results irCiki+Cklj)ok~Cuikkl Symmetry propertyO,=Oj=Cjk iik-Skl=Sik =jki = Cjiki +Cklj =CijklkliiThere remain 21 independent elastic components6
Stiffness of Perfect Elastic Solids • Symmetry property ij ijkl klij kl ijkl kl c c C • Isothermal and perfect elasticity results in ij ji kl kl C C ij ji kl lk ij ij ji kl kl kl lk ij ij ijkl ijkl klij kl klij C C C C C c c C C • There remain 21 independent elastic components 6
Generalized Hooke's Law in Matrix Form0,= CujuCul=Cj1161 + Cj222 + Cyj33633 + 2Cj12612 + 2Cyj1313 + 2Cuj23623(Ci1C133C112C113Cμ122Ci123af81C 2223C 233C 2212C 222C2213622C 333C 3323C3312C331363832812C/212C213C1223T12C1313Ci13232813Symm.1132623C2323T2323: 21 elastic constants7
11 11 22 22 33 33 12 12 13 13 23 23 1 1111 1122 1133 1112 1113 1123 2 2 2 ij ijkl kl ij ij ij ij ij ij C C C C C C C C C C C C C C C C C C 1 Generalized Hooke’s Law in Matrix Form 2 2222 2233 2212 2213 2223 3 3333 3312 3313 3323 12 1212 1213 1223 13 23 Symm. C C C C C C C C C C C C 2 3 12 1313 1323 13 2323 23 2 2 2 C C C • 21 elastic constants 7
Anisotropy: Differences in material properties along differentdirections Materials like wood, crystalline minerals, fiber-reinforced composites have such behaviorTypical WoodBody-CenteredHexagonalFiberReinforcedStructureCrystalCubic CrystalComposite: Note particular material symmetries indicated by arrows8
Anisotropy • Differences in material properties along different directions. • Materials like wood, crystalline minerals, fiberreinforced composites have such behavior. Body-Centered Cubic Crystal Fiber Reinforced Composite Hexagonal Crystal Typical Wood Structure • Note particular material symmetries indicated by arrows. 8
Monotropic Materials· Symmetric about one planeEamineCl1,Ci13,C223,C2223,C3,C33,C,Ci2Cl13=QimQ,Q1.OspCmmop(m= l;n =l;o= l;p=3)= C(l13 = QuQiQuQ,Ci113 = -Ci13 = Cium3=0= 0|C2223= 01113=0:3323=02312= 0C1312=03313CilllCi122Cμ133Ci112a61C222C2233C22126262001C3312C 33336303001Qi2812T12Ci21200-12813T13SymmC1313322823T232323.13 different elastic constants9
Monotropic Materials • Symmetric about one plane 1113 1 1 1 3 1113 11 11 11 33 1113 1113 1113 1123 2213 2223 1113 1123 2213 2223 3313 3323 1213 122 1 3 11 3 1 Examine ; 1; 1; 3 0 0 0 0 0 0 : , , , , , , 0 , C Q Q Q Q C m n o p m n o p mnop C Q Q Q Q C C C C C C C C C C C C C C C C C C C 0 1 0 0 0 1 0 0 0 1 Qij 3313 3323 2 13 2 C C C 0 0 0 111 1312 1111 1122 1133 1112 1 2 3 12 13 23 3 0 C C C C C C C1123 C C C 2222 2233 2212 C2213 C2223 C C 3333 3312 C3 13 3 C3323 C1212 C12 31 C1223 1 2 3 12 13 1313 1323 23 2323 2 2 Symm. 2 C C C • 13 different elastic constants 9