合作探究2 SA+SB=Sc在图3中还成立吗? 2.观察右边两个图 并填写下表: A的面积|B的面积C的面积 图3 169 25 B 即:两条直角边上的正方形面 积之和等于斜边上的正方形的 面积 方法
A B C 图3 2.观察右边两个图 并填写下表: A的面积 B的面积 C的面积 图3 16 9 25 SA+SB=SC在图3中还成立吗? 方法 即:两条直角边上的正方形面 积之和等于斜边上的正方形的 面积
合作探究2 (1)式子SA+SB=S能用直角三角形 的三边a、b、c来表示吗? a+b=c (2)那么直角三角形三边a、b、c p 之间的关系式是a+b=c B
A B C 图3 (1)式子SA+SB=SC能用直角三角形 的三边a、b、c来表示吗? (2) 那么直角三角形三边a、b、c 之间的关系式是_____________。 a b c 2 2 2 a b c a b c 2 2 2 c b a C B A
我们的猜想 直角三角形两直角边的平方和等于 斜边的平方 a+b=c
2 2 2 a b c 直角三角形两直角边的平方和等于 斜边的平方. a b c
法 证明猜想 证用拼图法证明 、b、c之间的关系 a2+b2=c2 S 大正方形 a2+b2+2ab =(a+b)2=a2+b2+2ab a 职方形=4S直角三角形+S小正方形 2 4 ab+c2 C/=c2+2ab a C a2+b2+2ab=c2+2ab a2+b2=c2
a a a a b b b b c c c c 用 拼 图 法 证 明 .a、b、c 之间的关系 a 2 +b2 =c 2 ∵S大正方形 =(a+b)2=a2+b2+2ab S大正方形=4S直角三角形+ S小正方形 =4· ab+c2 =c2+2ab ∴a2+b2+2ab=c2+2ab ∴a 2 +b2 =c 2 1 2 a2+b2+2ab 证法一:
证法二 现在我们一起来探 索“弦图”的奥妙吧 大正方形C3 S小正方形=(ba)2 S大正方形=4S三角形十S小正方形 即:Cc2=4 弦图 C2=2ab+a+b a 2h2=2 C
a b c S大正方形=c 2 S小正方形=(b-a) S大正方形=4·S三角形+S小正方形 即:c 2=4 2 C2 =2ab+a 2-2ab+b 2 a 2 + b 2 = c 2 弦图 现在我们一起来探 索“弦图”的奥妙吧! 证法二: