平二的盖分 4T-T--1-30=0 47-T,-T-T-14=0 47-7-T-T-25=0 47-7-7-7-12=0 按照(3)式立出结点g及处的差分方程: 478-7-2T-20=0 4T-T-2T-10=0 联立求解上列8个方程,得到(单位为℃): T=28.51,T=22.03,T=24.99,T=1961 T=21.84,T=1741,Tg=1997,T=1620 当温度具有曲线边界或斜边界时,在靠近边界处将出现 不规则的内结点,如图7-5a中的结点0。 26
26 4 12 0 4 25 0 4 14 0 4 30 0 − − − − = − − − − = − − − − = − − − − = f d e i e c f g d b c f c a d e T T T T T T T T T T T T T T T T 按照(3)式立出结点g及i处的差分方程: 4 2 10 0 4 2 20 0 − − − = − − − = i g f g i e T T T T T T 联立求解上列8个方程,得到(单位为℃): 21.84, 17.41, 19.97, 16.20 28.51, 22.03, 24.99, 19.61 = = = = = = = = e f g i a b c d T T T T T T T T 当温度具有曲线边界或斜边界时,在靠近边界处将出现 不规则的内结点,如图7-5a中的结点0
outside outside 3h(为 3h五h Oh2 B Fig 7-5 27
27 1 2 3 4 0 A B h h h h 1 2 3 4 0 A B h h h h Fig. 7—5 outside outside
平二的分解 边界外 边界外 3h(为 3h五h Oh2 B 图75 28
28 边 界 外 1 2 3 4 0 A B h h h h 边 界 外 1 2 3 4 0 A B h h h h 图 7—5
DIRFERENCESOLUTLONTOTHEQUESTONSOFPLAIN First we assume that boundary ab is first boundary. Open up temperature t into taylor series along x axes near node o, and eliminate three or more power of X-x q)(x-x)+/07 T=7⊥O7 (x-x0) Assume x equals to xo-h and xo sh respectively that means x-xo equals to-hand 5h(0<5<1) respectively MET- h/aT aT 7=+的了 Eliminate d ant we get T,+1T (0<< ax3。h5(+5)1+55 1) 772+74-27 ay h 29
29 First we assume that boundary AB is first boundary. Open up temperature T into taylor series along x axes near node 0,and eliminate three or more power of : 0 x − x 2 0 0 2 2 0 0 0 ( ) 2 1 ( ) x x x T x x x T T T − − + = + x0 − h x0 +h 0 Assume x equals to and respectively,that means x − x equals to and respectively. −h h(0 1) 0 2 2 2 2 0 0 0 2 2 2 0 3 0 2 1 2 + = + + = − x T h x T T T h x h T x T T T h A Eliminate ,and we get : 0 x T (0 1) 1 1 1 (1 ) 2 1 3 0 0 2 2 − + + + = T T T x h T A 2 2 4 0 0 2 2 2 h T T T y T + − =
平二的盖分 首先假定边界AB是第一类边界。将温度T在临近结点0处 沿x方向展为泰勒级数,略去x-x的三次幂及更高次的幂的项, 得到: q)(x-x)+/07 T=7⊥O7 (x-x0) 命x依次等于xh及x+为,即x-x依次等于一h及50≤5<1), 得 aT h2 T3=70 2(a =7n+5/07 25h/07 消去,得到 a-T T,+-7 axhL5(1+5)4+ (0<5<1) 02T)T2+T4-2T ay h
30 首先假定边界 AB 是第一类边界。将温度 在临近结点0处 沿 方向展为泰勒级数,略去 的三次幂及更高次的幂的项, 得到: T x 0 x − x 2 0 0 2 2 0 0 0 ( ) 2 1 ( ) x x x T x x x T T T − − + = + 命 依次等于 及 ,即 依次等于 及 , 得: x x0 − h x0 +h 0 x − x −h h(0 1) 0 2 2 2 2 0 0 0 2 2 2 0 3 0 2 1 2 + = + + = − x T h x T T T h x h T x T T T h A 消去 ,得到: 0 x T (0 1) 1 1 1 (1 ) 2 1 3 0 0 2 2 − + + + = T T T x h T A 2 2 4 0 0 2 2 2 h T T T y T + − =