平间二的盏分拿 §7-2稳定温度场的差分解 本节以无热源的、平面的、稳定的温度场为例,说明差分 法的应用。 微分方程简化为调和方程vT=0,令0 在无热源的平面稳定场中,aO97 06 =0,所以热传导 a-T 0 (a) 为了用差分法求解,在温度场的域内织成网格,如图7-1所示。 在任意一个结点,如在结点0,由差分公式有: T)T+3-2T h2 (b) a27)T2+4-2n ay h2 16
16 §7-2 稳定温度场的差分解 本节以无热源的、平面的、稳定的温度场为例,说明差分 法的应用。 在无热源的平面稳定场中, ,所以热传导 微分方程简化为调和方程 ,即: 0, 0, = 0 = = t T z T t 0 2 T = 0 2 2 2 2 = + y T x T (a) 为了用差分法求解,在温度场的域内织成网格,如图7-1所示。 在任意一个结点,如在结点0,由差分公式有: 2 1 3 0 0 2 2 2 h T T T x T + − = 2 2 4 0 0 2 2 2 h T T T y T + − = (c) (b)
DIRFERENCESOLUTLONTOTHEQUESTONSOFPLAIN Substitute it into()+()=0, we can get difference equation 4T07-T2-73-74=0 (1) (1) If all the boundary conditions of a temperature field have first boundary condition, then we can get all the T value of the boundary crunodes. thus we just need to make a (1) difference equation at every inside node Then we can get all the T value of the inside crunodes from these equations (2) The boundary node 0 has second boundary conditions,as in Fig. 7-3a Because the temperature Toof the node is unknown we need to make a (1) difference equation at the node In order to eliminate the T temperature of outside boundary void node 1 , we assume that the boundary plumbs x axes, and the outside normal of the boundary is parallel to x axes. See it in the picture and the boundary condition becomes aT (qx)0 17
17 Substitute it into ( ) ( 2 ) 0 0 ,we can get difference equation: 2 2 0 2 = + y T x T 4T0 −T1 −T2 −T3 −T4 = 0 (1) (1)If all the boundary conditions of a temperature field have first boundary condition,then we can get all the value of the boundary crunodes.thus we just need to make a(1)difference equation at every inside node. Then we can get all the value of the inside crunodes from these equations. T T (2)The boundary node 0 has second boundary conditions ,as in Fig.7-3a.Because the temperature of the node is unknown, we need to make a (1)difference equation at the node。In order to eliminate the temperature of outside boundary void node 1 ,we assume that the boundary plumbs x axes,and the outside normal of the boundary is parallel to x axes.See it in the picture and the boundary condition becomes: T0 T1 0 0 ( ) qx x T = −
平官间题的盖分解 代入(。)+()=0,即得差分方程: 4T07-T2-73-74=0 (1) (1)如果一个温度场的全部边界条件都具有第一类边界条件, 则所有边界结点处的值都是已知的。这样,只须在每一个 内结点处建立一个(1)型的差分方程,就可以由这些方程求 得所有内结点处的未知值了 (2)对于具有第二类边界条件的边界结点0,如图7-3a,由 于该结点处的温度G是未知的,需要计算,因而也需要在该 结点建立一个(1)型的差分方程。为了消去边界外的虚结点 1处的温度T,假定该边界是垂直于x轴的,而且该边界的向 外法线是沿x轴的正向,如图所示,则上述边界条件成为: aT =(4 18
18 代入 ( ) ( 2 ) 0 0 ,即得差分方程: 2 2 0 2 = + y T x T 4T0 −T1 −T2 −T3 −T4 = 0 (1) (1)如果一个温度场的全部边界条件都具有第一类边界条件, 则所有边界结点处的 值都是已知的。这样,只须在每一个 内结点处建立一个(1)型的差分方程,就可以由这些方程求 得所有内结点处的未知 值。 T T (2)对于具有第二类边界条件的边界结点0,如图7-3a,由 于该结点处的温度 是未知的,需要计算,因而也需要在该 结点建立一个(1)型的差分方程。为了消去边界外的虚结点 1处的温度 ,假定该边界是垂直于 轴的,而且该边界的向 外法线是沿 轴的正向,如图所示,则上述边界条件成为: T0 T1 x x 0 0 ( ) qx x T = −
inside 4 outside inside 4 outside y (a) (b) Fig 7-3 q ) o is a known heat current density which is parallel to x axes of node0. apply difference formula to at)we get T-T (q3)0 2h Get T, then substitute it into formula (1), we cam get the amendatory difference equation 470-T2-2T3-T=2h (q) (2) 19
19 outside x inside y 3 2 1 4 0 0 ( ) qx inside outside x y 3 2 1 4 0 Te (a) (b) is a known heat current density which is parallel to x axes of node 0 . Apply difference formula to ,we get : Fig.7-3 0 ( ) x q x T 0 1 3 ( ) 2 qx h T T = − − Get ,then substitute it into formula(1),we cam get the amendatory difference equation : T1 0 2 3 4 0 ( ) 2 4 2 qx h T T T T − − − = − (2)
平二的盖分 边界内一边界外 边界内 边界外 y (a) (b) 图7-3 其中()是结点0处的沿x方向的已知热流密度。对应用 差分公式,则上式成为: (T-T 2h/= (qx)0 解出T,代入(1)式,即得修正的差分方程: 470-72-273-74= 2(q (2) 20
20 边界内 边界外 x y 3 2 1 4 0 0 ( ) qx 边界内 边界外 x y 3 2 1 4 0 Te 图7-3 (a) (b) 其中 是结点0处的沿 x 方向的已知热流密度。对 应用 差分公式,则上式成为: 0 ( ) x q x T 0 1 3 ( ) 2 qx h T T = − − 解出 T1 ,代入(1)式,即得修正的差分方程: 0 2 3 4 0 ( ) 2 4 2 qx h T T T T − − − = − (2)