3. Unit feedback systems subjected to a RAMP input Type0” system: e=lime(s=lims s-0 1+ K∏I(s+z1)s 1+ KIz O sTI(S+P Type "” system: e =lime (S=lims =im )0 K∏(s+z)s )0 KIIz,S 0+ KIlz, K S'I(s+P, S Type“2” and higher systems es =lime(s)=lims Im S→ 1+ K∏(s+2)s20(,Ks 0+ K∏z;0+∞ S"II(s+P) OT cRamp input can be tracked by systems of types 2 and higher
4. Unit feedback systems subjected to a acceleration input ype0” system: eee= lim sE(s)=lims S→0 1+ K∏(S+z)s ∏(s+p;) Type"I” system: limE(s)=lims s→0 s→0 1+ K∏I(S+z)s Type2” system: s∏(s+p) ess= lim sE(s)=lims S→0 S→0 1+ K∏(s+2)s3K Type“3” and higher systems: s II(s+P,) eee=lim sE(s=0 →0 Acceleration inputs can be tracked by systems of types 3 and higher!
G(S) K(S+E1(S+22).S+Zp) KII(s+z (S+pu(s+p2).S+pk) S"II(s+P) KIt; S+1 s"∏(TS+1) K=lim sG(s) s→>0 Where. K'K j=l q the open-loop gain IIp given by this formula
( 1 ) ' ( 1) 11 + + = == s T s K s j q j n i m i j q j i mj pz K K 1 1 ' == Where, = –––– the open -loop gain given by this formula : ' lim ( ) 0 K s G s n s → =
8. 4 Errors and the error constants (Steady-State Error Coefficients) 误差和误差糸教(稳态误差糸数) How to calculate steady-state error simply? Whether or not we must calculate steady state error by using Laplace Inverse SS Transform
8.4 Errors and the error constants (Steady-State Error Coefficients) 误差和误差系数(稳态误差系数) How to calculate steady-state error simply? – Whether or not we must calculate steadystate error by using Laplace Inverse Transform ? ss e