Bending Deflectionmi@see.cn
Bending Deflection mi@seu.edu.cn
Contents·TheElasticCurve,Deflection&Slope(挠曲线、挠度和转角)·DifferentialEquationoftheElasticCurve(挠曲线微分方程)·Deflection&SlopebyIntegration(积分法求挠度和转角)·BoundaryConditions(边界条件)·SymmetryConditions(对称性条件)·ContinuityConditions(连续性条件)·DirectIntegrationfromDistributedLoads(直接由分布荷载积分求挠度和转角)·DirectIntegrationfromTransverseLoads(直接由剪力积分求挠度和转角)·DeformationsinaTransverseCrossSection(梁横截面内的变形)·CurvatureShortening(梁由于弯曲造成的轴向位移)2
• The Elastic Curve, Deflection & Slope (挠曲线、挠度和转角) • Differential Equation of the Elastic Curve(挠曲线微分方程) • Deflection & Slope by Integration(积分法求挠度和转角) • Boundary Conditions(边界条件) • Symmetry Conditions(对称性条件) • Continuity Conditions(连续性条件) • Direct Integration from Distributed Loads(直接由分布荷载积分求 挠度和转角) • Direct Integration from Transverse Loads(直接由剪力积分求挠度 和转角) • Deformations in a Transverse Cross Section(梁横截面内的变形) • Curvature Shortening(梁由于弯曲造成的轴向位移) Contents 2
Contents·Deflection&SlopebySuperposition(叠加法求挠度和转角)·SuperpositionofLoads(荷载叠加法)·SuperpositionofRigidized Structures(刚化叠加法)·CombinedSuperposition(荷载和变形组合叠加法)·Deflection&SlopebySingularFunctions(奇异函数法求挠度和转角)·Deflection&SlopebyMoment-AreaTheorems(图乘法求挠度和转角)·StiffnessCondition(刚度条件)·WaystoIncreaseFlexuralRigidity(梁的刚度优化设计)·BendingStrainEnergy(弯曲应变能)3
• Deflection & Slope by Superposition(叠加法求挠度和转角) • Superposition of Loads(荷载叠加法) • Superposition of Rigidized Structures(刚化叠加法) • Combined Superposition(荷载和变形组合叠加法) • Deflection & Slope by Singular Functions(奇异函数法求挠度和转 角) • Deflection & Slope by Moment-Area Theorems(图乘法求挠度和转 角) • Stiffness Condition(刚度条件) • Ways to Increase Flexural Rigidity(梁的刚度优化设计) • Bending Strain Energy(弯曲应变能) Contents 3
The Elastic Curve, Deflection and Slope. The elastic curve: beam axis under bending, required todetermine beam deflection and slope: Bending deflections (w = f(x)): vertical deflection of the neutralsurface, defined as downward positive / upward negative: Slope (0 = 0(x) ~ tan(0) = dw/dx): rotation of cross-sectionsdefined as clockwise positive / counter clockwise negative0wxDeflectioncurvewI4
• The elastic curve: beam axis under bending, required to determine beam deflection and slope. x w w Deflection curve The Elastic Curve, Deflection and Slope • Bending deflections (w = f(x)): vertical deflection of the neutral surface, defined as downward positive / upward negative. • Slope (θ = θ(x) ≈ tan(θ) = dw/dx): rotation of cross-sections, defined as clockwise positive / counter clockwise negative 4
Differential Eguation of the Elastic Curve.Curvature of the neutral surface11wM(x)K2)3/2p(x)(l + wEIp(x)xxM<0M>0MMM w">O Mw"<0WWEIw"=-MEl: flexural rigidity: The negative sign is due to the particular choice of the w-axis5
• Curvature of the neutral surface EIz M x x ( ) ( ) 1 2 3/2 1 ( ) (1 ) w w x w EIw M w x M M M 0 w 0 w x M 0 M w 0 M EI: flexural rigidity Differential Equation of the Elastic Curve 5 • The negative sign is due to the particular choice of the w-axis