Review of Displacement Formulation - SphericalNavier'sequation1oue2cotpu.20u。22uROugOuR2uRcotpu,1Ouga+(a+G)V'UR+F.=0R?R3R?aRRRapapR'sinpaeaRRRsinp ae2auau.2cot@1ouOuROugaOuR2ucotpu+(a+G)+F.=0R2RRapR'sin'pR'sinpaeRapaRRapRsingae2aou1 QugOueOUR2cotp1QuR+)cotpu1Ue2uR+(a+G)1=0.R'singR'sin?RsingaeaRRRRopR'singaan0Rsingaoa2a20212.o1acotp72ROp?R'sin'00?OR?RaRR?apDisplacement-strain relation:1Oue1oue1 OURoug1 OURURURcotpu.UpERRe2RRRRaRRapaRRapRsin@ o111OuROueou1(10uaecotpuERO6002RRR2RsinpoaRa0Rsinoae.Hooke's law..6
Review of Displacement Formulation – Spherical • Navier’s equation 2 2 22 2 2 2 2cot cot 2 2 11 0 sin sin 2 2 cot 1 1 1 2 cot R R R R R u uu u u uu u u Gu G F R R R R RR R R R R u uu u uu u u 2 2 22 2 2 2 cot 1 1 1 2 cot sin sin sin R R R u uu u uu u u Gu G R R R R RR R R R 2 2 2 22 0 2 2cot 1 1 1 2 cot 0 sin sin sin sin sin R R R F u uu u uu u u Gu G F R R R R RR R R R 2 22 2 2 2 2 2 22 2 sin sin sin sin sin 2 cot 1 1 sin R R R R RR R R R R RR R R R • Displacement-strain relation: 1 1 11 cot , , sin 2 1 1 11 1 cot RR R R R R uu u u u u uu u R RR R R R RR R uu u u u 1 1 11 1 cot , 2 sin 2 sin R R u uu u u u R RR R R R • Hooke’s law. 6
Displacement Formulation - (Centro-symmetricNavier's equationd?dduR2ukd2uV2(a+G)V'u+ FR = 0,OR?RoRR2RdRdRd'u2 dur2UR2URdduR=0+FR=G(a+GaR?R?R oRPdRdR2URddur+FR=0dRRdRE(1-v)1ddR4a+2G=01+2G=HR?dRdR(1+v)(1-2v) Strain-displacement relation:OURUR60GR=8RaR.Hooke's law2UROUR2UROuROuR2GUR2GCR=/0aRRaRRRaREvE入二G2(1+v)(1+v)(1-2v)7
Dis placement Formulation – Centro-s ymmetric • Navier’s equation 2 2 2 d dd d 2 2 2 2 2 2 2 2 2 2 0, 2 2 2 R RR R R d u du u d u d dd du u Gu G F R dR dR R R R R d u u 2 2 0 2 2 2 2 R R R R RR RR d u du u d G GF d du u d u u R R R R dR dR R 2 2 2 0 1 1 2 02 R R R d du u G F dR dR R d d E G R F G • Strain-dis placement relation: 2 2 2 0 , 2 1 12 G R R R u F G dR R Rd p • Hooke ’s law , R R R u u R R • Hooke s law . 2 2 2, 2 R R R RR R R uu u uu u G G RR R RR R , 1 1 2 21 E E G 7
Half-Space under Uniform Pressure and GravityqObservations and assumptionsxF,=0, F, =pg0IpgThu, = O,u, = u, (2)Navier's equationzououu.7+F=0L2arOzOrr52aauouaLou2pg=0OzOzOzOrerrr2u=(α+2G)Pg=0dz2By direct integrationd?udupgpgpg+ Bz+ A)=u.(z+d?2(几+2G)元+2Gdz1+2G8
Half-Sp y ace under Uniform Pressure and Gravity • Observations and assumptions q x 0, 0 F r z F g u u uz x o h u u uz r zz 0, • Navier’s equation z 2 2 0 r rr z r r u uu u Gu G F r rrr z 2 2 1 z z u u G r rr 2 2 z rr u uu G z z rr 0 z u g z r rr z z rr 2 2 2 0 z z d u G g dz • By direct integration 2 d u du gg g 2 2 2 2 2 22 z z z d u du gg g zA u zA B dz G dz G G 8
Half-Space under Uniform Pressure and GravityqStresses in terms of displacementsxOuOuu0OIpgI hOzerOrououOzOu.OuouOun+2GOozOzrOzapgdu+A), . =(+2G)=-pg(z+Ua0Adz1+2GdzThe traction BCs at z = Oa-q=G. (z=0)=-pgA山pgApgqq=Opg1+2Gpgpg9
Hal f-S pace under Uniform Pressure and Gravit y • Stresses in terms of displacements p y q x r r r u u r r 2 z r u u G z r x o h r r u u r r 2 z r u u G z r z r r z u u r r 2 , z z zr rz u u uu G G z z rz , 2 2 z z r z du du g zA G g z A dz G dz • The traction BCs at z = 0 q q z gA A z 0 g , 2 r z gq q z gz Gg g 9
Half-Space under Uniform Pressure and GravityqLateral to in-depth stress ratiox元EvE(1-v)arCe0Ipg几+2GI h(1+v)(1-2v)/ (1+v)(1-2v)a.d.VZThe displacement BCs at z = hpgq+ Bu.pgq2(元+2G)=B=h+pg2(α+2G)pgO = u. (z = h)pg(h2 -z2)+2q(h-z)pgUu.2(元+2G)2(+2G)Dg(u.)max = u. (z= 0)= Pgh +2qhThe maximum displacement2(α +2G)occurs atthetop surface10
Half-Space under Uniform Pressure and Gravity • Lateral to in-depth stress ratio p y q x 1 2 1 12 1 12 r z z E E G x o h 1 • The displacement BCs at z = h z • The displacement BCs at z = h 2 2 2 2 z g q u zB g q G B h 2 2 2 2 0z z g q G g B h G g uzh 2 2 2 2 2 22 22 z gqq gh z qh z u hz Gg g G 2 22 22 2 0 Gg g G gh qh u uz The maximum displacement max 0 2 2 z z u uz G p occurs at the top surface. 10