同理 (1 AA=2 T21 0 0 →(AA)2=AA 所以AA和AA均为幂等阵 21
21 所以AA 和A A均为幂等阵 A A A A Q T I Q Q I P P T T I T A A Q r r r − − − − − − − − ⇒ = ⎟⎟⎠⎞ ⎜⎜⎝⎛ = ⎟⎟⎠⎞ ⎜⎜⎝⎛ ⎟⎟⎠⎞ ⎜⎜⎝⎛ = 2 21 1 1 21 22 12 1 ( ) 0 0 0 0 0 同理
特别, 若k(A)=p,则AA=ID nxp 若rk(A)=n,则AA=Im nx p 22
22 n n p p n p rk A n AA I rk A p A A I = = = = − × − × 若 ,则 若 ,则 ( ) ( ) 特别
性质5 对任意矩阵A,有 AA(AA)A=AA(AAAA=A AA(AAAA=AA 23
23 A A A A A A A A A A A A A ′ ′ ′ = ′ ′ ′ = − − ( ) ( ) 对任意矩阵 ,有 A′A A′A A′A = A′A − ( ) 性质5
证明 (1)Ax=0台A'Ax=0 事实上, Ax=0→A'Ax=0 →x'A'Ax=0→Ax=0 24
24 0 0 0 0 , (1) 0 0 ⇒ ′ ′ = ⇒ = = ⇒ ′ = = ⇔ ′ = x A Ax Ax Ax A Ax Ax A Ax 事实上 证明
(2)Ax=Ay台A'A=A'Ay (3)对Vx∈RP,有 A'A(A'A)A'AK=A'Ax,利用(2) →对Vx∈RP,有A(A'AA'AK=Ax, →A(A'A)A'A=A 同理可证A'A(A'A)A'=A' 25
25 A A A A A A A A A A A A x R A A A A Ax Ax A A A A A Ax A Ax x R Ax Ay A Ax A Ay p p ′ ′ ′ = ′ ⇒ ′ ′ = ⇒ ∀ ∈ ′ ′ = ′ ′ ′ = ′ ∀ ∈ = ⇔ ′ = ′ − − − − ( ) ( ) ( ) ( ) (2) (3) (2) 同理可证 对 ,有 , ,利用 对 ,有