ValExpressionofsguarewaveinFourierseriesformotu ~ Vm sin(@,t) + V3m sin(30,t)+ Vsm sin(50,t)+ Vrm sin(70,t) sin(3,t) += sin(5 の,t) += sin(7 0,t)].[sin(ot) += s3元0.512-2-1
v1 U1, f1 t 1 1 1 1 [sin( 2 3 5 7 Vd 4 1 1 1 u V1m sin(1 t) +V3m sin(31 t)+V5m sin(51 t) +V7m sin(71 t) = t) + sin(3 t) + sin(5t) + sin(7 t)] Expression of square wave in Fourier series form
U1.f1ValExpressionofsguarewaveinFourierseriesformotu ~ Vim sin(Oit) + V3m sin(30;t)+ Vsm sin(50,t)+..... +Vnm sin(nO;t)三[sin(,) + ↓ sin(30,) + sin(50,) .+ in(n,)] Va/35元?u0.5-22-44-6-0.5
v1 U1, f1 t 1 1 1 1 [sin( 2 3 5 Vd n 4 1 1 1 = u V1m sin(1 t) +V3m sin(31 t)+V5m sin(51 t)++Vnm sin(n1 t) t) + sin(3 t) + sin(5t) ++ sin(nt)] Expression of square wave in Fourier series form
ValExpressionofsguarewaveinFourierseriesformotu = Vim sin(O,t)+ V3m sin(3,t)+ Vsm sin(5O,t)+ ...... + Vnm sin(nOit)+=[sin(0,t) + = sin(30 ,t) += sin(5α,t) + ...+- sin(no,t)+...]. 'a3元n
v1 U1, f1 t 1 1 1 1 [sin( 3 5 d 2 V n 4 1 1 1 = u =V1m sin(1 t)+V3m sin(31 t)+V5m sin(51 t)++Vnm sin(n1 t)+ t) + sin(3 t) + sin(5 t) ++ sin(n t) +] Expression of square wave in Fourier series form
1.2Conceptsof non-sinusoidal waveformU1, f11) Fundamental and harmonics01 is called fundamental frequency.no1 is called harmonic frequency or harmonicswhere n>1.V1m is the peak amplitude of fundamental componentVnm is the peak amplitude of harmonics componentwhere n>1
1.2 Concepts of non-sinusoidal waveform v1 U1, f1 t 1 is called fundamental frequency. n1 is called harmonic frequency or harmonics, where n>1. V1m is the peak amplitude of fundamental component. Vnm is the peak amplitude of harmonics component, where n>1. 1) Fundamental and harmonics
2)RMS (Root Mean Square)0Definition:u?dtU = Us = Urms In square wave on this page, we haveU = U, = Urms = JJ u2dt="/nnJJ vansin2(nwit)=/zm-1
U1, f1 v1 t Definition: 2) RMS (Root Mean Square) In square wave on this page, we have