(四)紫外光谱 (Ultra Voilet Spectroscopy) (1)紫外光谱图 (2)基本原理 (3)UV图谱的解析
(四 ) 紫外光谱 (Ultra Voilet Spectroscopy) (1) 紫外光谱图 (2) 基本原理 (3) UV图谱的解析
(四)紫外光谱 Ultra Voilet Spectroscopy, 紫外光谱的产生是由于有机分子在入射光的 作用下,发生了价电子的跃迁,使分子中的价 电子由基态E跃迁到激发态E:。 分子的结构不同,跃迁电子的能级差不同,从 而分子UV吸收的λmax不同;另外,发生各种 电子跃迁的机率也不同,反映在紫外吸收上为 Emax不同 因而可根据λmax和εmax了解一些分子结构的信 自
(四 ) 紫外光谱 (Ultra Voilet Spectroscopy) • 紫外光谱的产生是由于有机分子在入射光的 作用下,发生了价电子的跃迁,使分子中的价 电子由基态E0跃迁到激发态E!。 • 分子的结构不同,跃迁电子的能级差不同,从 而分子UV吸收的λmax不同;另外,发生各种 电子跃迁的机率也不同,反映在紫外吸收上为 εmax不同。 • 因而可根据λmax和εmax了解一些分子结构的信 息
真空 紫外区十普通紫外区 可见光区 100nm 200nm 400nm 800nm 真空紫外区—波长范围在200nm以下的区域。 真空紫外区对普通有机物的结构分析的用处不大。 普通紫外区—波长范围在200nm-400nm之间的区域。 普通紫外区对有机物结构分析的用处最大。共轭体系以及芳香 族化合物在此区域内有吸收,是紫外光谱讨论的主要对象 可见光区——波长范围在400nm-400nm之间的区域 可见光区与普通紫外区基本上没有太大的差别,只是光源不同,普 通紫外区用氢灯,可见光区用钨丝灯
普通紫外区 真空 紫外区 可见光区 100nm 200nm 400nm 800nm 真空紫外区——波长范围在200nm以下的区域。 真空紫外区对普通有机物的结构分析的用处不大。 普通紫外区——波长范围在200nm-400nm之间的区域。 普通紫外区对有机物结构分析的用处最大。共轭体系以及芳香 族化合物在此区域内有吸收,是紫外光谱讨论的主要对象。 可见光区——波长范围在400nm-400nm之间的区域。 可见光区与普通紫外区基本上没有太大的差别,只是光源不同,普 通紫外区用氢灯,可见光区用钨丝灯
(1)紫外光谱图 ogE Amax Amax 横坐标—一波长λ,以nm表示。 纵坐标—吸收强度,以A(吸光度)或ε(mo吸光系数)表示。 A=los 8 C g—mol吸光系数c—mol浓度 1一液池厚度/cm
(1) 紫外光谱图 l/nm loge loge1 loge2 lmax1 lmax2 横坐标——波长λ,以nm表示。 纵坐标——吸收强度,以A(吸光度)或ε(mol吸光系数)表示。 e mol吸光系数 c mol浓度 l 液池厚度/cm A=log I I0 = e c l
当电子发生跃迁时,不可避免地要伴随着分子振、转能 级的改变,加之溶剂的作用,一般UV谱图不会呈现尖 锐的吸收峰,而是一些胖胖的平滑的峰包。在识别谱图 时,以峰顶对应的最大吸收波长λmax和最大摩尔吸收系 数max为准 有机化合物UV吸收的λmax和max在不同溶剂中略有 差异。因此,有机物的UV吸收谱图应标明所使用的溶 剂
当电子发生跃迁时,不可避免地要伴随着分子振、转能 级的改变,加之溶剂的作用,一般UV谱图不会呈现尖 锐的吸收峰,而是一些胖胖的平滑的峰包。在识别谱图 时,以峰顶对应的最大吸收波长λmax和最大摩尔吸收系 数εmax为准。 有机化合物UV吸收的λmax和εmax在不同溶剂中略有 差异。因此,有机物的UV吸收谱图应标明所使用的溶 剂