握隐函数和参数式所确定的函数的一阶、二阶导数的求法 3教学重点难点: 理解导数和微分概念,函数的可导性与连续性的关系:高阶导数的概念,高阶导数的运算 法则。高阶导数概念,导数的几何意义:难点为高阶导数,参数方程及隐函数的高阶导数, 4.教学建议:微分在近似计算中的应用不作考试要求。 第三章微分中值定理与导数的应用 1基本内容: 罗尔定理,格朗日定理,柯西定理,带有拉格朗日余项的泰勒公式。导数的应用,罗必达 法则,函数增减性判定法,函数的极值及其求法,最大值,最小值问题,函数图形的凹凸及其 判定法,拐点及其求法,水平与垂直渐连线,函数图形的描绘,弧微分,曲率定义及其计算公 式与曲率半径。 2.教学基本要求: 理解罗尔定理,拉格朗日定理,函数的极值概念:熟悉柯西定理、泰勒定理:掌握求函数的 极值,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点的方法:知道曲率和曲率半 径的概念:能用导数描述一些物理量,会应用拉格朗日定理,能描绘函数的图形,会解数简单 的最大值和最小值问题,会计算曲率和曲率半径。 3教学重点难点: 掌握函数的极值的计算方法,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点 的方法。熟悉函数图形的描绘。难点为柯西定理、素勒定理:曲率和曲率半径的计算:函数作 g 4教学建议:泰勒公式不作考试要求。 第四章不定积分 1基本内容: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数, 有理函数及简单的无理函数的积分举例。 2,教学基本要求: 理解不定积分的概念和性质,掌握基本积分公式,换元积分法,分部积分法:了解有理函 数的积分,可化为有理函数的积分。 3.教学重点难点: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法。第二类换元积分法, 3
握隐函数和参数式所确定的函数的一阶、二阶导数的求法。 3.教学重点难点: 理解导数和微分概念,函数的可导性与连续性的关系;高阶导数的概念,高阶导数的运算 法则。高阶导数概念,导数的几何意义;难点为高阶导数,参数方程及隐函数的高阶导数。 4.教学建议:微分在近似计算中的应用不作考试要求。 第三章 微分中值定理与导数的应用 1.基本内容: 罗尔定理,格朗日定理,柯西定理,带有拉格朗日余项的泰勒公式。导数的应用,罗必达 法则,函数增减性判定法,函数的极值及其求法,最大值,最小值问题,函数图形的凹凸及其 判定法,拐点及其求法,水平与垂直渐连线,函数图形的描绘,弧微分,曲率定义及其计算公 式与曲率半径。 2.教学基本要求: 理解罗尔定理,拉格朗日定理,函数的极值概念;熟悉柯西定理、泰勒定理;掌握求函数的 极值,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点的方法;知道曲率和曲率半 径的概念;能用导数描述一些物理量,会应用拉格朗日定理,能描绘函数的图形,会解数简单 的最大值和最小值问题,会计算曲率和曲率半径。 3.教学重点难点: 掌握函数的极值的计算方法,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点 的方法。熟悉函数图形的描绘。难点为柯西定理、泰勒定理;曲率和曲率半径的计算;函数作 图。 4.教学建议:泰勒公式不作考试要求。 第四章 不定积分 1.基本内容: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数, 有理函数及简单的无理函数的积分举例。 2.教学基本要求: 理解不定积分的概念和性质,掌握基本积分公式,换元积分法,分部积分法;了解有理函 数的积分,可化为有理函数的积分。 3.教学重点难点: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法。第二类换元积分法, 3
有理函数积分法。 4教学建议:对于有理函数积分,只要求学生学会最简单的有理函数积分。 第五章定积分 1基本内容: 定积分概念、性质,积分变上限的函数及其求导定理,牛顿一莱布尼兹公式,定积分的换 元法与分部积公法,广义积分,定积分在几何学中的应用(面积、弧长、平行截面面积已知的 主体的体积)。 2.教学基本要求: 理解定积分的概念和性质,积分变上限的函数及其求导定理。熟悉牛顿一莱布尼兹公式, 定积分的换元法与分部积公法。 3.教学重点难点: 定积分的概念,性质,基本积分公式,换元积分法,分部积分法:广义积分,定积分在几 何学中的应用。定积分的换元法与分部积公法及应用:难点为反常积分。 4,教学建议:反常积分的敛散性不应作为重点。 第六章定积分的应用 1,基本内容: 定积分的元素法:定积分在几何上的应用:平面图形的面积,特殊立体的体积,平面曲线 的弧长:定积分在物理上的应用。 2.教学基本要求: 熟练掌握利用定积分的微元法求解平面图形的面积,特殊立体的体积,平面曲线的弧长: 定积分在物理上的应用等实际问题。 3,教学重点难点: 定积分的微元法。利用微元法求解面积、体积, 4教学建议:定积分的微元法应该重点讲解,并适当引申。 第七章常微分方程 1基本内容: 微分方程的定义,阶、解、通解、初始条件,特解。变量可分离的方程,齐次方程,一阶 线性方程,伯努利方程和全微分方程。可降阶的高阶微分方程:y=f(x、y=f(x,y), y”=∫(y,y)。线性微分方程的解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次 线性微分方程。 4
有理函数积分法。 4.教学建议:对于有理函数积分,只要求学生学会最简单的有理函数积分。 第五章 定积分 1.基本内容: 定积分概念、性质,积分变上限的函数及其求导定理,牛顿一莱布尼兹公式,定积分的换 元法与分部积公法,广义积分,定积分在几何学中的应用(面积、弧长、平行截面面积已知的 主体的体积)。 2.教学基本要求: 理解定积分的概念和性质,积分变上限的函数及其求导定理。熟悉牛顿一莱布尼兹公式, 定积分的换元法与分部积公法。 3.教学重点难点: 定积分的概念,性质,基本积分公式,换元积分法,分部积分法;广义积分,定积分在几 何学中的应用。定积分的换元法与分部积公法及应用;难点为反常积分。 4.教学建议:反常积分的敛散性不应作为重点。 第六章 定积分的应用 1.基本内容: 定积分的元素法;定积分在几何上的应用;平面图形的面积,特殊立体的体积,平面曲线 的弧长;定积分在物理上的应用。 2.教学基本要求: 熟练掌握利用定积分的微元法求解平面图形的面积,特殊立体的体积,平面曲线的弧长; 定积分在物理上的应用等实际问题。 3.教学重点难点: 定积分的微元法。利用微元法求解面积、体积。 4.教学建议:定积分的微元法应该重点讲解,并适当引申。 第七章 常微分方程 1.基本内容: 微分方程的定义,阶、解、通解、初始条件,特解。变量可分离的方程,齐次方程,一阶 线性方程,伯努利方程和全微分方程。可降阶的高阶微分方程:y (n) =f(x)、 y′′ = f ( x, y′) , y′′ = f ( y, y′)。线性微分方程的解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次 线性微分方程。 4
2教学基本要求: 熟练掌握变量可分离的方程及一阶线性方程的解法,二阶常系数齐次线性微分方程的解 法。了解微分方程、解、通解,初始条件和特解等概念,二阶线性微分方程解的结构。掌握自 由项为多项式,指数函数,正弦函数,余弦函数以及它们的乘积的二阶常系数非齐次线性微分 方程的解法。知道下列几种特殊的高阶方程ym=f(x),y”=f(x,y),y=f(y,y)的解法, 微分方程的幂级数解法,高阶常系数齐次线性微分方程的解法。会识别下列几种一阶微分方程, 变量可分离的方程,齐次方程一阶线性方程,伯努利方程和全微分方程,会解齐次方程和伯努 利方程,会解较简单的全微分方程,会用微分方程解一些简单的几何和物理问题 3.教学重点难点: 微分方程、通解的定义:一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。微分方 程的求解。 4教学建议:欧拉方程可以不讲 四、教学环节与学时分配 其 中 课外辅 总学 导/ 教学内容 各注 时 讲课 实验 上机其他 课外实 第一章函数、极限、 16 0 车续 2第二章导数与微分 12 0 中值定理与 3 第三章 导数的应用 “其它”主 4第四章 不定积分 10 0 要方式为 5第五竞定积分 习题课 第六竞 定积分的应 第七章常微分方程 12 10 机动(阶段复习备用) 共计 8066 0 0 14 0 五、教学中应注意的问题: 通过教学要实现传授知识和发展能力两方面的教学目的,能力培养要贯穿教学全过程。教 学中注意满足不同层次学生的不同要求,积极为学生终身学习搭建平台、拓展空间。不仅把数
2.教学基本要求: 熟练掌握变量可分离的方程及一阶线性方程的解法,二阶常系数齐次线性微分方程的解 法。了解微分方程、解、通解,初始条件和特解等概念,二阶线性微分方程解的结构。掌握自 由项为多项式,指数函数,正弦函数,余弦函数以及它们的乘积的二阶常系数非齐次线性微分 方程的解法。知道下列几种特殊的高阶方程 y (n) =f(x), y′′ = f ( x, y′) ,y′′ = f ( y, y′)的解法, 微分方程的幂级数解法,高阶常系数齐次线性微分方程的解法。会识别下列几种一阶微分方程, 变量可分离的方程,齐次方程一阶线性方程,伯努利方程和全微分方程,会解齐次方程和伯努 利方程,会解较简单的全微分方程,会用微分方程解一些简单的几何和物理问题。 3.教学重点难点: 微分方程、通解的定义;一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。微分方 程的求解。 4.教学建议:欧拉方程可以不讲。 四、教学环节与学时分配 序 号 教学内容 总学 时 其 中 课外辅 导/ 课外实 践 备 注 讲课 实验 上机 其他 1 第一章 函数、极限、 连续 16 14 0 0 2 0 “其它”主 要方式为 习题课 2 第二章 导数与微分 12 10 0 0 2 0 3 第三章 中值定理与 导数的应用 14 12 0 0 2 0 4 第四章 不定积分 10 8 0 0 2 0 5 第五章 定积分 8 8 0 0 0 0 6 第六章 定积分的应 用 6 4 0 0 2 0 7 第七章 常微分方程 12 10 0 0 2 0 8 机动(阶段复习备用) 2 0 0 0 2 0 共 计 80 66 0 0 14 0 五、教学中应注意的问题: 通过教学要实现传授知识和发展能力两方面的教学目的,能力培养要贯穿教学全过程。教 学中注意满足不同层次学生的不同要求,积极为学生终身学习搭建平台、拓展空间。不仅把数 5
学课程当作重要的基础课和工具课,更将其视为一门素质课。教学中要结合教学内容及学生特 点,选择适宜的教学方法与教学手段,突出重点、化解难点,有意识、有目的、有重点地营造 有利于学生能力发展的氛围,启发学生思维,促进学生能力的提高。并通过教研活动统一教学 行为。 六、实验实践内容:无 七、考核方式: 考试采用闭卷考试形式。内容包括基本概念,基础理论,分析计算,题型分为填空、选择、 计算或解答题,证明等方式,题目的难易程度要视学生的实际情况而定。口 总评成绩:平时学习过程的考核占30%,理论闭卷考试成绩占70%,其中平时学习过程包 括平时作业(占总成绩的20%),考勤(占总成绩的5%),课堂表现及课后互动(占总成绩的 5%)。 八、教材及主要参考书: 1、选用教材: 《高等数学》(上下册,第七版)同济大学主编,高等教有出版社,2014年。 2、主要参考书: 山《高等数学》吴赣昌等,《数学物理方程》,中国人民大学出版社,2009年。口 [2]《高等数学》上下册黄立宏等编,复旦大学出版社,2009年。 3)]《数学分析》陈纪修,高等教育出版社,2005年。 [4《数学复习指南》,陈文灯等编,世界图书出版社,2010年。 九、教改说明及其他:无 执笔人:黄宠辉系室审核人:廖茂新 6
学课程当作重要的基础课和工具课,更将其视为一门素质课。教学中要结合教学内容及学生特 点,选择适宜的教学方法与教学手段,突出重点、化解难点,有意识、有目的、有重点地营造 有利于学生能力发展的氛围,启发学生思维,促进学生能力的提高。并通过教研活动统一教学 行为。 六、实验/实践内容:无 七、考核方式: 考试采用闭卷考试形式。内容包括基本概念,基础理论,分析计算,题型分为填空、选择、 计算或解答题,证明等方式,题目的难易程度要视学生的实际情况而定。 总评成绩:平时学习过程的考核占 30%,理论闭卷考试成绩占 70%,其中平时学习过程包 括平时作业(占总成绩的 20%),考勤(占总成绩的 5%),课堂表现及课后互动(占总成绩的 5%)。 八、教材及主要参考书: 1、选用教材: 《高等数学》(上下册,第七版) 同济大学主编,高等教育出版社,2014 年。 2、主要参考书: [1] 《高等数学》吴赣昌等,《数学物理方程》,中国人民大学出版社,2009 年。 [2] 《高等数学》上下册黄立宏等编,复旦大学出版社,2009 年。 [3]《数学分析》 陈纪修,高等教育出版社,2005 年。 [4]《数学复习指南》,陈文灯等编,世界图书出版社,2010 年。 九、教改说明及其他: 无 执笔人:黄宠辉 系室审核人:廖茂新 6
《高等数学A1》课程考试大纲 课程编号:130704003 总学时数:80学时 学分:5.0学分 一、考试对象 理工科各专业。 二、考试目的 本课程考试目的是对学生系统获得一元函数微积分的基本知识,基础理论和常用的运算方 法,比较熟练的运算能力、抽象思维能力、逻辑推理能力、几何直观能力和效果检验,以便使 学生自我发现哪些知识学得好,哪些还需要更进一步加强,为学习后继课程和进一步扩大数学 知识奠定必要的数学基础。 三、考试要求 1.试题覆盖面要广,既要注意覆盖基础知识和基本技能的掌握程度,同时也要考虑有 定的区分度。 2.试题难度要适中,要考核学生对基础知识和基本技能的掌握程度,避免过难过偏,考试 结果要能反映大多数学生的实际水平。 3.试题要重视对后继课程学习有所帮助。 四、考试内容与要求 书中所有带*号的内容与小字部分均不作考试要求。 第一章函数与极限10一20分值 1、考试内容:函数概念、函数的几种特性,反函数、复合函数和初等函数。极限、极限概 念,左右极限,无穷小量,无穷大量,极限的四则运算,两个极限存在准则,两个重要极限, 无穷小的比较。连续性、连续性概念,连续函数的运算性质,基本初等函数和初等函数的连续 性,闭区间上连续函数的性质(最大值,最小值定理和介值定理)。 2、考试要求:理解函数的概念,函数在一点连续的概念:熟悉基本初等函数的性质及其 图形:理解复合函数概念,两个极限存在准则,无穷小、无穷大概念,初等函数的连续性:掌 握极限四则运算法则及无穷小的比较:会用两个重要极限求极限,会判断间断点的类型:能应 用最大值,最小值定理和介值定理来解题。 1
《高等数学 A1》课程考试大纲 课程编号:130704003 总学时数:80 学时 学分:5.0 学分 一、考试对象 理工科各专业。 二、考试目的 本课程考试目的是对学生系统获得一元函数微积分的基本知识,基础理论和常用的运算方 法,比较熟练的运算能力、抽象思维能力、逻辑推理能力、几何直观能力和效果检验,以便使 学生自我发现哪些知识学得好,哪些还需要更进一步加强,为学习后继课程和进一步扩大数学 知识奠定必要的数学基础。 三、考试要求 1. 试题覆盖面要广,既要注意覆盖基础知识和基本技能的掌握程度,同时也要考虑有一 定的区分度。 2. 试题难度要适中,要考核学生对基础知识和基本技能的掌握程度,避免过难过偏,考试 结果要能反映大多数学生的实际水平。 3. 试题要重视对后继课程学习有所帮助。 四、考试内容与要求 书中所有带*号的内容与小字部分均不作考试要求。 第一章 函数与极限 10~20 分值 1、考试内容:函数概念、函数的几种特性,反函数、复合函数和初等函数。极限、极限概 念,左右极限,无穷小量,无穷大量,极限的四则运算,两个极限存在准则,两个重要极限, 无穷小的比较。连续性、连续性概念,连续函数的运算性质,基本初等函数和初等函数的连续 性,闭区间上连续函数的性质(最大值,最小值定理和介值定理)。 2、考试要求 :理解函数的概念,函数在一点连续的概念;熟悉基本初等函数的性质及其 图形;理解复合函数概念,两个极限存在准则,无穷小、无穷大概念,初等函数的连续性;掌 握极限四则运算法则及无穷小的比较;会用两个重要极限求极限,会判断间断点的类型;能应 用最大值,最小值定理和介值定理来解题。 7