工程力学(C) (24) 北京理工大学理学队力学系韩斌
工程力学(C) 北京理工大学理学院力学系 韩斌 ( 24 )
§11轴向拉压 §11.1轴向拉压的应力和变形 1轴向拉压时的应力 F 外力:沿杆件轴线作用的外力 轴向拉压 分布内力 内力:横截面上的轴力F一系的等效 横截面上内力的分布如何?
§11 轴向拉压 §11.1 轴向拉压的应力和变形 1.轴向拉压时的应力 F F 轴向拉压 外力:沿杆件轴线作用的外力 内力:横截面上的轴力FN 分布内力 系的等效 横截面上内力的分布如何?
观察实验:杆件拉伸时的变形
观察实验:杆件拉伸时的变形 FN=A
轴向拉压时的平截面假设: (1)变形前的横截面变形后仍为平面,仍垂直 于杆的轴线。 (2)纵向纤维互不挤压。一单向受力假定 由此得出轴向拉压横截面正应力公式: (11.1) 若轴力或横截面积沿轴线变化F、=FN(x),A=4x) 阶梯杆 ∞(x)=hN(x) 1.2) 锥形杆 A(x)
轴向拉压时的平截面假设: (1)变形前的横截面变形后仍为平面,仍垂直 于杆的轴线。 (2)纵向纤维互不挤压。 P FN=A 由此得出轴向拉压横截面正应力公式: A FN = (11.1) 若轴力或横截面积沿轴线变化FN=FN(x), A=A(x) ----单向受力假定。 ( ) ( ) ( ) A x F x x N 阶梯杆 = (11.2) 锥形杆
P 拉压正应力公式的适用范围:除集中力作用点附近 圣维南原理 c 轴向拉压单元体的应力分析: a面上的应力: O=-+-cos 2a=ocos a t =-sin 2a=osin a cos a 2 当o=0时 a. max =0=0A 当a=45时,a,mx=a,a=45 22A
P P 拉压正应力公式的适用范围: 圣维南原理 除集中力作用点附近 轴向拉压单元体的应力分析: A FN = 面上的应力: sin 2 sin cos 2 cos 2 cos 2 2 2 = = = + = 当=0时, A FN ,max = ,=0 = = 当=45º时, A FN 2 2 ,max = , =4 5 = =