实验八滞后变量【实验目的】掌握分布滞后模型的估计方法【实验内容】建立天然橡胶价格影响的分布滞后模型【例1】表8-1列出期货市场29个连续交易日的原油和天然橡胶的价格数据,请利用分布滞后模型建立天然橡胶价格影响模型。表8-129个连续交易日的原油和天然橡胶的价格数据日期日期橡胶价格原油价格橡胶价格原油价格12.0112.2311800369.4910520355.8012.0211185314.7512.2410350342.1212.0312.2610515314.7510680355.80294.2212.04996512.2910895362.6512.3012.0810195294.2211045369.4912.099925267.3812.3111360396.8612.1010320307.901.0511905423.831.0612.1110275321.5912615430.6712.1210045314.751.0813200403.3212.1510425301.071.0913550403.32294.221.1212.161049513200396.4912.1710695273.701.1313185403.321.1412.1810135246.3313500389.6512.1910110225.801.1513500396.4912.2210515383.17【实验步骤】一、Almon估计1.分析滞后期长度在Eviews命令窗口中键入:CROSSYX,输出结果见图8-1。1
1 实验八 滞后变量 【实验目的】 掌握分布滞后模型的估计方法 【实验内容】 建立天然橡胶价格影响的分布滞后模型 【例1】 表 8-1 列出期货市场 29 个连续交易日的原油和天然橡胶的价格数据,请利用分 布滞后模型建立天然橡胶价格影响模型。 表 8-1 29 个连续交易日的原油和天然橡胶的价格数据 【实验步骤】 一、Almon 估计 ⒈分析滞后期长度 在 Eviews 命令窗口中键入:CROSS Y X,输出结果见图 8-1。 日期 橡胶价格 原油价格 日期 橡胶价格 原油价格 12.01 11800 369.49 12.23 10520 355.80 12.02 11185 314.75 12.24 10350 342.12 12.03 10515 314.75 12.26 10680 355.80 12.04 9965 294.22 12.29 10895 362.65 12.08 10195 294.22 12.30 11045 369.49 12.09 9925 267.38 12.31 11360 396.86 12.10 10320 307.90 1.05 11905 423.83 12.11 10275 321.59 1.06 12615 430.67 12.12 10045 314.75 1.08 13200 403.32 12.15 10425 301.07 1.09 13550 403.32 12.16 10495 294.22 1.12 13200 396.49 12.17 10695 273.70 1.13 13185 403.32 12.18 10135 246.33 1.14 13500 389.65 12.19 10110 225.80 1.15 13500 396.49 12.22 10515 383.17
口回区GrOup:UHIIILEDForkfile: UNIIILED::UntitledView ProcobjectPrint Name FreezeSample SheetStats SpecCrossCorrelogramofYandXSampie.20人Includedobservations:29CorrelationsareasymptoticallyconsistentapproximationsY,X(-I)Y,X(+i)1laglead10.7755100.7755110.617910.78301120.77940.48191130.75020.391810.69340.28701141口/50.60330.1760一---60.52610.080170.41710.015011---80.2731-0.0439口L-0.1363-0.1285-9-/-100.0047-0.17811口服-11I11-0.1241-0.263111二-12-0.2155-0.3240图8-1互相关分析图图中第一栏是Y与X各滞后期相关系数的直方图。可以看出,库存额与当年及前七年的销售额相关。因此初步可以设:y=a+box,+bx--+b,x,-2+.....+b,x-7+,假定b,可以由一个二次多项式逼近。2.利用Almon方法估计模型在Eviews命令窗口中键入:LSYCPDL(X,5,2)LSYCPDL(X,6,2)cLSYPDL(X,7,2)LSYCPDL(X,8,2)LSYCPDL(X,9,2)LsYCPDL(X,10,2)然后根据R,t值发现,滞后期为9的模型估计效果较好。输出结果见图8-2,Eviews分别给出了Almon方法估计的模型和还原后的估计模型及相应参数。2
2 图 8-1 互相关分析图 图中第一栏是 Y 与 X 各滞后期相关系数的直方图。可以看出,库存额与当年及前七年 的销售额相关。因此初步可以设: 0 1 1 2 2 3 7 t t t t t y a b x b x b x b x = + + + + + + − − − 假定 i b 可以由一个二次多项式逼近。 ⒉利用 Almon 方法估计模型 在 Eviews 命令窗口中键入: LS Y C PDL(X,5,2) LS Y C PDL(X,6,2) LS Y C PDL(X,7,2) LS Y C PDL(X,8,2) LS Y C PDL(X,9,2) LS Y C PDL(X,10,2) 然后根据 2 R ,t 值发现,滞后期为 9 的模型估计效果较好。输出结果见图 8-2,Eviews 分别给出了 Almon 方法估计的模型和还原后的估计模型及相应参数
EViews-[Equation:UNIIILEDYorkfile:UHIIILED::UntitleFile Edit Object Yiew Proc Quick Options indow HelpView Proc ObjectPrint NameFreezeEstimateForecast Stats ResidsDependentVariable:YMethod: Least SquaresDate:08/14/11Time:22:27Sample (adjusted):1029Includedobservations:20afteradjustmentsProb.VariableCoefficientStd.Errort-Statisticc1227.295435.55812.8177520.0124PDL013.4801560.3537759.8372090.0000PDL020.91320.0106430.0961590.110682PDL030.0481050.3346-0.047863-0.994973R-squared0.97992011594.00MeandependentvarAdjustedR-squared0.976155S.D.dependent var1321.471204.057813.65154S.E.ofregressionAkaike info criterionSumsquared resid666233.1Schwarzcriterion13.85069-132.515413.69042Log likelihoodHannan-QuinncriterF-statistic260.2748Durbin-Watson stat1.490953Prob(F-statistic)0.000000t-StatisticLag Distribution of X1CoefficientStd.Error/02.671770.689183.876733113.017460.357108.44980213.267420.2246414.5453313.421650.2903711.7836143.480160.353779.83721513.442940.352979.75414163.309990.2996011.0480173.081310.2887210.6724-82.756915.830180.47287192.336780.827202.82492图8-2Almon估计输出结果经过Almon变化之后的估计结果为:(z,即图8-2中的PDL项):,=1227.295+3.4802Z,+0.0106Z,-0.0478Z(9.837)(0.1107)(0.9950)R2=0.9799R2=0.9762DW=1.4910还原后的分布滞后模型为:3
3 图 8-2 Almon 估计输出结果 经过 Almon 变化之后的估计结果为:( i z 即图 8-2 中的 PDL 项): 0 1 2 ˆ 1227.295 3.4802 0.0106 0.0478 t t t t y Z Z Z = + + − (9.837) (0.1107) (-0.9950) 2 R = 0.9799 2 R = 0.9762 DW =1.4910 还原后的分布滞后模型为:
, =1227.295+2.6718x, +3.0175x,+ +3.2674x,-2 +3.4217x-3 +3.4802x,-4 +3.4430x-s(3.8767)(8.4498)(14.5453)(11.7836)(9.8372)(9.7541)+3.3100x_c +3.0813x,-, +2.7570x,-s + 2.3368x,-9(11.0480)(10.6724)(5.8302)(2.8249)二、Almon估计的模拟1.Almon变换genr ±z0=x+x(-1)+x(-2)+x(-3)+x(-4)+x(-5)+x(-6)+x(-7)+x(-8)+x(-9)genr z1= x(-1)+2*x(-2)+3*x(-3)+4*x(-4)+5*x(-5)+6*x(-6) +7*x(-7)+8* x(-8) +9*x(-9)genrz2=x(-1)+4*x(-2)+9*x(-3)+16*x(-4)+25*x(-5)+36*x(-6)+49*x(-7)+64*x(-8)+81*x(-9)2.估计变化后的模型LSYCZOZ1Z2Equation:UNIIILEDVorkfile: UNIIILED::Untitledy口回区View Proc Object Print Name Freeze Estimate Forecast stats ResidsDependent Variable:YMethod:LeastSquaresDate:08/14/11Time:22:34Sample(adjusted):1029Includedobservations:20afteradjustmentsVariableStd.Errort-StatisticProb.CoefficientC1227.295435.55812.8177520.0124Zo0.00132.6717680.6891813.876730Z10.3935510.37360.4299390.915365Z2-0.0478630.048105-0.9949730.3346R-squared0.97992011594.00MeandependentvarAdjusted R-squared0.976155S.D.dependent var1321.471S.E.ofregression204.057813.65154Akaike infocriterionSum squared resid666233.1Schwarzcriterion13.85069-132.515413.69042Log likelihoodHannan-Quinn criterF-statistic260.27481.490953Durbin-Watson statProb(F-statistic)0.000000图8-3Almon变换估计结果1回归结果见图8-3,即:J,=1227.295+2.6718Zo.+0.3936Z,0.0478Z,3.8768)(0.9154)(-0.9950)R2=0.9799R2=0.9762DW=1.49104
4 1 2 3 4 5 6 ˆ 1227.295 2.6718 3.0175 3.2674 3.4217 3.4802 3.4430 (3.8767) (8.4498) (14.5453) (11.7836) (9.8372) (9.7541) +3.3100 3.08 t t t t t t t t y x x x x x x x − − − − − − = + + + + + + + 7 8 9 13 2.7570 2.3368 (11.0480) (10.6724) (5.8302) (2.8249) t t t x x x − − − + + 二、Almon 估计的模拟 ⒈Almon 变换 genr z0=x+x(-1)+x(-2)+x(-3)+x(-4)+x(-5)+x(-6)+x(-7)+x(-8)+x(-9) genr z1= x(-1)+2*x(-2)+3*x(-3)+4*x(-4)+5*x(-5)+6*x(-6) +7*x(-7)+8* x(-8) + 9*x(-9) genr z2=x(-1)+4*x(-2)+9*x(-3)+16*x(-4)+25*x(-5)+36*x(-6)+49*x(-7)+64*x(-8) +81*x(-9) ⒉估计变化后的模型 LS Y C Z0 Z1 Z2 图 8-3 Almon 变换估计结果 1 回归结果见图 8-3,即: 0 1 2 ˆ 1227.295 2.6718 0.3936 0.0478 t t t t y Z Z Z = + + − 3.8768) (0.9154) (-0.9950) 2 R = 0.9799 2 R = 0.9762 DW =1.4910
3.计算原模型中的系数估计值根据Almon变换原理有:b.=aob, =a +a, +a,b, =a +2a, +4a,b, =a, +3a, +9a,......b, = 2.6718所以有:b,=2.6718+0.3936-0.0478=3.0175b,=2.6718+2*0.3936-4*0.0478~3.2674b,=2.6718+3*0.3936-9*0.0478~3.4271所以还原成原分布滞后模型为:, =1227.295+2.6718x, +3.0175x,-, +3.2674x,-2 +3.4217x,- +3.4802x,-4 +3.4430x5+3.3100x,6 +3.0813x,-7 +2.7570x,-s + 2.3368x,-9如果按照:genrz0=x+x(-1)+x(-2)+x(-3)+x(-4)+x(-5)+x(-6)+x(-7)+x(-8)+x(-9)genr z1=-4*x-3*x(-1)-2*(-2)-x(-3)+x(-5)+2*x(-6)+3*x(-7)+4*x(-8)+5*x(-9)genr z2=x+x(-2)+4*x(-3)+9*x(-4)+16*x(-5)+25*x(-6)+36*x(-7)+49*x(-8)+ 64*x(-9)LSYCZOZ1Z2回归结果见图8-4,此时和图8-2的上半部分一致。5
5 ⒊计算原模型中的系数估计值 根据 Almon 变换原理有: 0 0 ˆ ˆ b = a 1 0 1 2 ˆ ˆ ˆ ˆ b = a + a + a 2 0 1 2 ˆ 2 ˆ 4 ˆ ˆ b = a + a + a 3 0 1 2 ˆ 3ˆ 9 ˆ ˆ b = a + a + a . 所以有: 0 ˆ b = 2.6718 1 ˆ b = + − = 2.6718 0.3936 0.0478 3.0175 2 ˆ b = + − 2.6718 2*0.3936 4*0.0478 3.2674 3 ˆ b = + − 2.6718 3*0.3936 9*0.0478 3.4271 . 所以还原成原分布滞后模型为: 1 2 3 4 5 6 7 8 9 ˆ 1227.295 2.6718 3.0175 3.2674 3.4217 3.4802 3.4430 +3.3100 3.0813 2.7570 2.3368 t t t t t t t t t t t y x x x x x x x x x x − − − − − − − − − = + + + + + + + + + 如果按照: genr z0=x+x(-1)+x(-2)+x(-3)+x(-4)+x(-5)+x(-6)+x(-7)+x(-8)+x(-9) genr z1=-4*x-3*x(-1)-2*x(-2)-x(-3)+x(-5)+2*x(-6)+3*x(-7)+4*x(-8)+5*x(-9) genr z2= x+x(-2)+4*x(-3)+9*x(-4)+16*x(-5)+25*x(-6)+36*x(-7)+49*x(-8)+ 64*x(-9) LS Y C Z0 Z1 Z2 回归结果见图 8-4,此时和图 8-2 的上半部分一致