国内图书分类号:TP242.3 学校代码:10213 国际图书分类号:629.127 密级:公开 工学博士学位论文 SMA驱动仿生机器鱼的尾鳍和喷射推进性能 及其实验研究 博士研究生:高飞 导 师:王振龙教授 申请学位:工学博士 学 科:机械制造及其自动化 所在单位:机电工程学院 答辩日期:2015年9月 授予学位单位:哈尔滨工业大学 万方数据
国内图书分类号:TP242.3 学校代码:10213 国际图书分类号:629.127 密级:公开 工学博士学位论文 SMA 驱动仿生机器鱼的尾鳍和喷射推进性能 及其实验研究 博士研究生:高飞 导 师:王振龙教授 申请学位:工学博士 学 科:机械制造及其自动化 所 在 单 位:机电工程学院 答 辩 日 期:2015 年 9 月 授予学位单位:哈尔滨工业大学 万方数据
Classified Index:TP242.3 U.D.C:629.127 Dissertation for the Doctoral Degree in Engineering THE CAUDAL FIN AND JET PROPULSION PERFORMANCE OF THE BIONIC ROBOT FISH DRIVEN BY SMA AND EXPERIMENT RESEARCH Candidate: Gao Fei Supervisor: Prof.Wang Zhenlong Academic Degree Applied for: Doctor of Engineering Speciality: Mechanical Manufacturing and Automation Affiliation: School of Mechatronics Engineering Date of Defence: September,2015 Degree-Conferring-Institution: Harbin Institute of Technology 万方数据
Classified Index: TP242.3 U.D.C: 629.127 Dissertation for the Doctoral Degree in Engineering THE CAUDAL FIN AND JET PROPULSION PERFORMANCE OF THE BIONIC ROBOT FISH DRIVEN BY SMA AND EXPERIMENT RESEARCH Candidate: Gao Fei Supervisor: Prof. Wang Zhenlong Academic Degree Applied for: Doctor of Engineering Speciality: Mechanical Manufacturing and Automation Affiliation: School of Mechatronics Engineering Date of Defence: September, 2015 Degree-Conferring-Institution: Harbin Institute of Technology 万方数据
摘要 摘要 仿生机器鱼作为鱼类游动机理和机器人技术的结合点,为研制新型的水下 推进器提供了新的思路,有着重要的研究价值和应用前景。水下生物的推进方 式主要可分为三类:尾鳍摆动式、胸鳍波动式和喷射推进式。目前,研制的仿 生机器鱼多模拟前两类推进方式,而少有模拟喷射推进的。此外,随着智能材 料的出现,将智能材料应用于仿生机器鱼的设计成为一种趋势。SMA是智能材 料的一种,具有输出应力、应变大和驱动电压低的优点,适宜作为仿生机器鱼 的驱动材料。本文将以SMA作为驱动材料,一方面模拟鱼类尾鳍摆动机制设 计一种仿生尾鳍推进器,另一方面模拟墨鱼喷射推进机制设计一种仿墨鱼喷射 推进器,并分别设计两种仿生机器鱼以验证其可行性。 本文首先在借鉴鱼类尾鳍结构和动作机制的基础上研制了一种SMA驱动 的仿生尾鳍,该仿生尾鳍在电流的驱动下可实现大幅度双向柔性弯曲摆动,具 有仿生效果好、结构简单和动作无噪声的优点。为分析其驱动特性,在综合了 其力学模型、SMA的热力学模型和本构模型等模型的基础上建立了其驱动模 型。由驱动模型得出当驱动电流介于某一特定区间时,仿生尾鳍的弯曲摆角与 其驱动电流之间呈近似线性关系,并得到了实验的验证,为仿生尾鳍摆角的控 制提供了理论和实验基础。 为进一步研究仿生尾鳍的推进性能,采用计算流体力学方法对三维仿生尾 鳍的柔性弯曲摆动进行了C℉D仿真和计算,仿真结果表明仿生尾鳍摆动不仅产 生周期性波动的推进力,同时还产生周期性波动的侧向力,并且侧向力的波动 幅值远大于推进力的波动幅值。为消除侧向力的波动,提出一种双尾鳍对称摆 动的推进方式。对其进行了CFD仿真和计算,仿真结果表明双尾鳍对称摆动不 仅有效抑制了侧向力的波动,而且还对推进力起到了增强作用,即双尾鳍产生 的推进力大于两个独立单尾鳍产生的推进力之和。此外,对单尾鳍摆动和双尾 鳍摆动时周围流体的速度场、压力场的分布特征以及流场的三维涡结构进行了 分析,研究了尾鳍摆动的推进机理以及双尾鳍摆动时的流场耦合作用。随后, 搭建了力学性能测试平台,分别对单尾鳍摆动和双尾鳍摆动的推进力和侧向力 进行了测试,实验结果验证了仿真的正确性。 本课题组在对墨鱼喷射推进机制分析的基础上,借鉴墨鱼外套膜的结构研 制了一种SMA驱动的仿生外套膜结构,并藉此实现了仿生喷射推进。为进一 步提高仿生外套膜的动作性能,本文对其布丝结构进行了改进,提出一种V型 布丝结构仿生外套膜。为分析其动作和推进性能,在综合了其几何形变模型、 -I- 万方数据
摘 要 - I - 摘 要 仿生机器鱼作为鱼类游动机理和机器人技术的结合点,为研制新型的水下 推进器提供了新的思路,有着重要的研究价值和应用前景。水下生物的推进方 式主要可分为三类:尾鳍摆动式、胸鳍波动式和喷射推进式。目前,研制的仿 生机器鱼多模拟前两类推进方式,而少有模拟喷射推进的。此外,随着智能材 料的出现,将智能材料应用于仿生机器鱼的设计成为一种趋势。SMA 是智能材 料的一种,具有输出应力、应变大和驱动电压低的优点,适宜作为仿生机器鱼 的驱动材料。本文将以 SMA 作为驱动材料,一方面模拟鱼类尾鳍摆动机制设 计一种仿生尾鳍推进器,另一方面模拟墨鱼喷射推进机制设计一种仿墨鱼喷射 推进器,并分别设计两种仿生机器鱼以验证其可行性。 本文首先在借鉴鱼类尾鳍结构和动作机制的基础上研制了一种 SMA 驱动 的仿生尾鳍,该仿生尾鳍在电流的驱动下可实现大幅度双向柔性弯曲摆动,具 有仿生效果好、结构简单和动作无噪声的优点。为分析其驱动特性,在综合了 其力学模型、SMA 的热力学模型和本构模型等模型的基础上建立了其驱动模 型。由驱动模型得出当驱动电流介于某一特定区间时,仿生尾鳍的弯曲摆角与 其驱动电流之间呈近似线性关系,并得到了实验的验证,为仿生尾鳍摆角的控 制提供了理论和实验基础。 为进一步研究仿生尾鳍的推进性能,采用计算流体力学方法对三维仿生尾 鳍的柔性弯曲摆动进行了 CFD 仿真和计算,仿真结果表明仿生尾鳍摆动不仅产 生周期性波动的推进力,同时还产生周期性波动的侧向力,并且侧向力的波动 幅值远大于推进力的波动幅值。为消除侧向力的波动,提出一种双尾鳍对称摆 动的推进方式。对其进行了 CFD 仿真和计算,仿真结果表明双尾鳍对称摆动不 仅有效抑制了侧向力的波动,而且还对推进力起到了增强作用,即双尾鳍产生 的推进力大于两个独立单尾鳍产生的推进力之和。此外,对单尾鳍摆动和双尾 鳍摆动时周围流体的速度场、压力场的分布特征以及流场的三维涡结构进行了 分析,研究了尾鳍摆动的推进机理以及双尾鳍摆动时的流场耦合作用。随后, 搭建了力学性能测试平台,分别对单尾鳍摆动和双尾鳍摆动的推进力和侧向力 进行了测试,实验结果验证了仿真的正确性。 本课题组在对墨鱼喷射推进机制分析的基础上,借鉴墨鱼外套膜的结构研 制了一种 SMA 驱动的仿生外套膜结构,并藉此实现了仿生喷射推进。为进一 步提高仿生外套膜的动作性能,本文对其布丝结构进行了改进,提出一种 V 型 布丝结构仿生外套膜。为分析其动作和推进性能,在综合了其几何形变模型、 万方数据
哈尔滨工业大学工学博士学位论文 力学模型、腔内压强模型以及SMA丝的热力学模型和本构模型等模型的基础 上建立了其动作理论模型。利用该模型计算了仿生外套膜的动作幅值及推进力, 并研究了布丝角度对动作幅值的影响,得出了最优布丝角度。随后,利用所搭 建的力学性能测试平台对仿生喷射推进器的推进性能进行了测试,实验结果验 证了理论模型的正确性。 最后,分别研制了基于仿生尾鳍推进和基于仿生喷射推进的机器鱼,并研 制了具有自主游动功能的机器鱼控制系统,为机器鱼实现自主游动提供了平台。 进行了机器鱼的游动实验,实验结果表明机器鱼均可实现直线游动、转弯游动 以及按预定轨迹的自主游动。此外,实验结果还表明双尾鳍推进有效的克服了 单尾鳍推进时机器鱼的摇艏现象,有利于提高机器鱼游动的稳定性。 关键词:SMA:仿生机器鱼:尾鳍推进;喷射推进:推进性能:CFD仿真:自 主游动 -Ⅱ 万方数据
哈尔滨工业大学工学博士学位论文 - II - 力学模型、腔内压强模型以及 SMA 丝的热力学模型和本构模型等模型的基础 上建立了其动作理论模型。利用该模型计算了仿生外套膜的动作幅值及推进力, 并研究了布丝角度对动作幅值的影响,得出了最优布丝角度。随后,利用所搭 建的力学性能测试平台对仿生喷射推进器的推进性能进行了测试,实验结果验 证了理论模型的正确性。 最后,分别研制了基于仿生尾鳍推进和基于仿生喷射推进的机器鱼,并研 制了具有自主游动功能的机器鱼控制系统,为机器鱼实现自主游动提供了平台。 进行了机器鱼的游动实验,实验结果表明机器鱼均可实现直线游动、转弯游动 以及按预定轨迹的自主游动。此外,实验结果还表明双尾鳍推进有效的克服了 单尾鳍推进时机器鱼的摇艏现象,有利于提高机器鱼游动的稳定性。 关键词:SMA;仿生机器鱼;尾鳍推进;喷射推进;推进性能;CFD 仿真;自 主游动 万方数据
Abstract Abstract As the combined point of the fish swimming mechanism and the robot technology,the bionic robot fish provides a new way to develop the new type of the underwater propeller,which has important research value and application prospect. The fish swimming modes can be divided into three types,which are caudal fin oscillatory propulsion mode,pectoral fin undulatary propulsion mode and jet propulsion mode.Currently,the majority of the bionic robot fish mimic the former two propulsion modes while fewer robot fish mimic the jet propulsion mode Moreover,with the development of intelligent materials,the application of those materials in bionic robot fish has become to be the tendency.As a kind of the intelligent materials,SMA are the ideal actuating material for the bionic robot fish because of its greater stress and strain and lower driving voltage.In this paper,a kind of bionic caudal fin propulsor mimicing fish caudal fin propulsion and a kind of bionic jet propulsor mimicing squid jet propulsion actuated by SMA are designed respectively.Meanwhile,two kinds of bionic robot fish based above the two bionic propulor are developped to verify the feasibility. Initially,by imitating the structure and action mechanism of the caudal fin of the fish,a bionic SMA-driven caudal fin has been developed,which can achieve flexible bidirectional bending in a large range when it was driven by current.In order to analyze the driving performance of the bionic caudal fin,the driving model has been established which combined the mechanical and geometric model of the caudal fin and the thermodynamic model and the constitutive model of SMA. Through the analysis of the driving model,it can come to a conclusion that the relationship between the bending angle of the bionic caudal fin and the driving current is approximately linear when the driving current varied between a certain range.And it is verified by experiment,which provides the theoretical and experimental basis for the control of the bionic caudal fin. For further studying the propulsion performance,the CFD method was emplyed to simulate the three-dimensional flexible bending of the bionic caudal fin.The simulation results show that the flexible bending of the caudal fin can not only produce the periodic proplusive force,but also produce the periodic lateral force, and the fluctuation amplitude of the lateral force is much greater than the proplusive force. To eliminate the fluctuation of the lateral force,the twin caudal fin symmetrical swing propulsion mode was proposed.The numerical simulation was carried out and the results show that the twin caudal fin symmetrical swing mode not only -I- 万方数据
Abstract - III - Abstract As the combined point of the fish swimming mechanism and the robot technology, the bionic robot fish provides a new way to develop the new type of the underwater propeller, which has important research value and application prospect. The fish swimming modes can be divided into three types, which are caudal fin oscillatory propulsion mode, pectoral fin undulatary propulsion mode and jet propulsion mode. Currently, the majority of the bionic robot fish mimic the former two propulsion modes while fewer robot fish mimic the jet propulsion mode. Moreover, with the development of intelligent materials, the application of those materials in bionic robot fish has become to be the tendency. As a kind of the intelligent materials, SMA are the ideal actuating material for the bionic robot fish because of its greater stress and strain and lower driving voltage. In this paper, a kind of bionic caudal fin propulsor mimicing fish caudal fin propulsion and a kind of bionic jet propulsor mimicing squid jet propulsion actuated by SMA are designed respectively. Meanwhile, two kinds of bionic robot fish based above the two bionic propulor are developped to verify the feasibility. Initially, by imitating the structure and action mechanism of the caudal fin of the fish, a bionic SMA-driven caudal fin has been developed, which can achieve flexible bidirectional bending in a large range when it was driven by current. In order to analyze the driving performance of the bionic caudal fin, the driving model has been established which combined the mechanical and geometric model of the caudal fin and the thermodynamic model and the constitutive model of SMA. Through the analysis of the driving model, it can come to a conclusion that the relationship between the bending angle of the bionic caudal fin and the driving current is approximately linear when the driving current varied between a certain range. And it is verified by experiment, which provides the theoretical and experimental basis for the control of the bionic caudal fin. For further studying the propulsion performance, the CFD method was emplyed to simulate the three-dimensional flexible bending of the bionic caudal fin. The simulation results show that the flexible bending of the caudal fin can not only produce the periodic proplusive force, but also produce the periodic lateral force, and the fluctuation amplitude of the lateral force is much greater than the proplusive force. To eliminate the fluctuation of the lateral force, the twin caudal fin symmetrical swing propulsion mode was proposed. The numerical simulation was carried out and the results show that the twin caudal fin symmetrical swing mode not only 万方数据