20CHAPTER1SIGNIFICANCE,HISTORY.AND CHALLENGESOFENVIRONMENTAL MICROBIOLOGYMaier, R.M., I.L. Pepper, and C.P. Gerba. 2000.Hanson,P.J.,N.T.Edwards,C.T.Garten,and J.A.Andrews.2000.Separating root and soil microbialEnvironmental Microbiology.Academic Press,Sancontributions to soil respiration:Areview of meth-Diego, CA.Maymo-Gatell, X.,Y.T. Chien, J.M. Gossett, andodsand observations.Biogeochemistry48:115-146.Heemsbergen,D.A.2004.Biodiversity effects on soilS.H.Zinder.1997.Isolation of a bacterium thatprocessesexplainedbyinterspecificfunctional dis-reductivelydechlorinates tetrachloroethenetosimilarity.Science306:1019-1020.ethene.Science276:1568-1571.Huang, P.M., J.-M. Bollag,and N. Senesi (eds) 2002.McArthur,JV.2006.MicrobialEcology:An evolution-Interactions between Soil ParticlesandMicroorganisms:ary approach.ElsevierPublishing,Amsterdam.Impactontheterrestrial ecosystem.Wiley andSons,Miller,G.T.,Jr.2004.LivingintheEnvironment:Prin-New York.ciples,connections,and solutions,13th edn.Brooks!Jones,T.H.,L.J.Thompson,J.H.Lawton,etal.1998.Cole-Thomson LearningInc.,PacificGrove,CA.Impacts of rising atmospheric carbon dioxide onMillero,F.J.2001.ThePhysicalChemistryofNaturalmodel terrestrial ecosystems.Science280:441-443.Waters.WileyInterscience,NewYork.Karl, D.,A. Michaels, B. Bergman, et al. 2002.Morel, F.M., A.M.L.Kraepiel, and M.Amyiot.1998.Dinitrogen fixation in the world's oceans.Bio-Thechemical cvcleandbioaccumulationof mer-geochemistry57/58:47-98.cury.Annu.Rev.Ecol.Systemat.29:543-566.Kirchman, D.L.(ed.)2000.Microbial Ecology of theMurphy,D.M.2001.Fundamentals of Light MicroscopyOceans.WileyandSons,NewYork.and ElectronicImaging.Wiley-Liss,NewYorkKowalchuk, G.A.and J.R. Stephen.2o01.Ammonia-Nelson,D.L.and M.M.Cox.2o05.Lehninger Prin-ciples of Biochemistry,4th edn. W.H.Freeman, Newoxidizing bacteria:A model for molecular micro-York.bialecology.Anmu.Rev.Microbiol.55:485-529Krebs,C.L.2001.Ecology:The experimental analysisofNicholls, D.G. and s.J.Ferguson.2002.Bioenergeticsdistributionandabundance.BenjaminCummings,San3.Academic Press, London.Francisco,CAOlsen,G.J.,D.J.Lane,S.J.Giovannoni, and N.R.Pace.Lechevalier, H.A.and M.Solotorovsky.1965.Three1986.Microbial ecology and evolution:A ribo-somal RNA approach. Annu.Rev.Microbiol.4o:Centuriesof Microbiology.McGraw-Hill,NewYork337365.Lengeler,J.W.,G.Drews, and H.G.Schlegel (eds)1999.Biology of Prokaryotes.BlackwellScience,Oremland,R.S.and F.J.Stolz.2003.Theecology ofStuttgart.arsenic.Science300:939-944.1995.Biogeo-Likens,G.E.and F.H.Bormann.Osborn,A.M.andC.J.Smith(eds)2005.Molecularchemistry ofaForestedEcosystem,2nd edn.Springer-Microbial Ecology.Taylorand Francis,New York.Verlag,NewYork.Pace, N.R.1997.A molecular view of microbial1976.MarineMicrobiology.diversityandthebiosphere.Science276:734-740.Litchfield,C.D.(ed.)BenchmarkPapers inMicrobiologyNo.11.Dowden,Pace,N.R.,D.A.Stahl,D.J.Lane,andG.J.Olsen.19s6Hutchinson andRossInc.,Stroudsburg,PATheanalysis of natural microbial populations byLovley,D.R.2003.Cleaning up with genomics:ribosomal RNA sequences.Adv.Microbial Ecol.9:1-55.Applying molecular biology to bioremediation.Partensky.F.,W.R.Hess, and D.Vaulot. 1999.Pro-NatureRev.Microbiol.1:35-44Macura, J.1974.Trendsand advances in soil micro-chlorococcus,amarine photosyntheticprokaryotebiology from1924to1974.Geoderma12:311-329.of global significance.Microbiol. Mol. Biol.Rev.Madigan,M.T.and J.M.Martinko.2006.Brock63:106-127Biology ofMicroorganisms,11thednPrenticeHall,Pichard, S.L, L.Campbell, K.Carder, et al.1997Englewood Cliffs, NJ.Analysisof ribulosebisphosphatecarboxylasegeneMadsen,E.L.1998.Epistemologyof environmentalexpressioninnaturalphytoplanktoncommunitiesmicrobiology.Environ.Sci.Technol.32:429-439.bygroup-specificgeneprobing.MarineEcol.Progr.Madsen, E.L. 2005. Identifying microorganisms re-Series149:239-253.Rickleffs, R.E. and G.L.Miller.2000. Ecology, 4th edn.sponsibleforecologically significantbiogeochem-icalprocesses.NatureRev.Microbiol.3:439-446W.H.Freeman, New York
20 CHAPTER I SIGNIFICANCE, HISTORY, AND CHALLENGES OF ENVIRONMENTAL MICROBIOLOGY Hanson, P.J., N.T. Edwards, C.T. Garten, and J.A. Andrews. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48:115–146. Heemsbergen, D.A. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020. Huang, P.M., J.-M. Bollag, and N. Senesi (eds) 2002. Interactions between Soil Particles and Microorganisms: Impact on the terrestrial ecosystem. Wiley and Sons, New York. Jones, T.H., L.J. Thompson, J.H. Lawton, et al. 1998. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280:441–443. Karl, D., A. Michaels, B. Bergman, et al. 2002. Dinitrogen fixation in the world’s oceans. Biogeochemistry 57/58:47–98. Kirchman, D.L. (ed.) 2000. Microbial Ecology of the Oceans. Wiley and Sons, New York. Kowalchuk, G.A. and J.R. Stephen. 2001. Ammoniaoxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55:485–529. Krebs, C.I. 2001. Ecology: The experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco, CA. Lechevalier, H.A. and M. Solotorovsky. 1965. Three Centuries of Microbiology. McGraw-Hill, New York. Lengeler, J.W., G. Drews, and H.G. Schlegel (eds) 1999. Biology of Prokaryotes. Blackwell Science, Stuttgart. Likens, G.E. and F.H. Bormann. 1995. Biogeochemistry of a Forested Ecosystem, 2nd edn. SpringerVerlag, New York. Litchfield, C.D. (ed.) 1976. Marine Microbiology. Benchmark Papers in Microbiology No. 11. Dowden, Hutchinson and Ross Inc., Stroudsburg, PA. Lovley, D.R. 2003. Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Rev. Microbiol. 1:35–44. Macura, J. 1974. Trends and advances in soil microbiology from 1924 to 1974. Geoderma 12:311–329. Madigan, M.T. and J.M. Martinko. 2006. Brock Biology of Microorganisms, 11th edn. Prentice Hall, Englewood Cliffs, NJ. Madsen, E.L. 1998. Epistemology of environmental microbiology. Environ. Sci. Technol. 32:429–439. Madsen, E.L. 2005. Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nature Rev. Microbiol. 3:439–446. Maier, R.M., I.L. Pepper, and C.P. Gerba. 2000. Environmental Microbiology. Academic Press, San Diego, CA. Maymo-Gatell, X., Y.T. Chien, J.M. Gossett, and S.H. Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. McArthur, J V. 2006. Microbial Ecology: An evolutionary approach. Elsevier Publishing, Amsterdam. Miller, G.T., Jr. 2004. Living in the Environment: Principles, connections, and solutions, 13th edn. Brooks/ Cole-Thomson Learning Inc., Pacific Grove, CA. Millero, F.J. 2001. The Physical Chemistry of Natural Waters. Wiley Interscience, New York. Morel, F.M., A.M.L. Kraepiel, and M. Amyiot. 1998. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Systemat. 29:543–566. Murphy, D.M. 2001. Fundamentals of Light Microscopy and Electronic Imaging. Wiley-Liss, New York. Nelson, D.L. and M.M. Cox. 2005. Lehninger Principles of Biochemistry, 4th edn. W.H. Freeman, New York. Nicholls, D.G. and S.J. Ferguson. 2002. Bioenergetics 3. Academic Press, London. Olsen, G.J., D.J. Lane, S.J. Giovannoni, and N.R. Pace. 1986. Microbial ecology and evolution: A ribosomal RNA approach. Annu. Rev. Microbiol. 40: 337–365. Oremland, R.S. and F.J. Stolz. 2003. The ecology of arsenic. Science 300:939–944. Osborn, A.M. and C.J. Smith (eds) 2005. Molecular Microbial Ecology. Taylor and Francis, New York. Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734–740. Pace, N.R., D.A. Stahl, D.J. Lane, and G.J. Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microbial Ecol. 9:1–55. Partensky, F., W.R. Hess, and D. Vaulot. 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63:106–127. Pichard, S.L., L. Campbell, K. Carder, et al. 1997. Analysis of ribulose bisphosphate carboxylase gene expression in natural phytoplankton communities by group-specific gene probing. Marine Ecol. Progr. Series 149:239–253. Rickleffs, R.E. and G.L. Miller. 2000. Ecology, 4th edn. W.H. Freeman, New York. 9781405136471_4_001.qxd 1/15/08 9:21 Page 20
21CHAPTERISIGNIFICANCE,HISTORY,AND CHALLENGESOFENVIRONMENTAL MICROBIOLOGYRittmann,B.E.andP.L.McCarty.2001.Envir-Microbiology,2nd edn,PrenticeHall, Upper SaddeRiver, NJ.onmental Biotechnology:Principles and applications.Taylor, C.D.and C.O.Wirsen.1997.Microbiology andMcGraw-Hill, Boston, MA.Rochelle,P.A.(ed.)2o0l.EnvironmentalMolecularecology of filamentous sulfur formation.Science277:1483-1485.Microbiology:Protocols and applications.Horizon Sci-Tchobanoglous, G.,F.L.Burton,and H.D.Stenselentific,Wymondham,UK.Schaechter, M., J.L.Ingraham, and F.C.Niedhardt.2002.Wastewater Engineering:Treatment and reuse.2006.Microbe.American Society for MicrobiologyMcGraw-Hill, New York.Press,Washington,DC.Ternes, T.A.,A.Joss, and H.Seigrist.2004.Scrut-Schink,B.1997.Energetics of syntrophic coopera-inizing personal care products.Environ.Sci.tion in methanogenic degradation. Microbiol. Mol.Technol.38:393A-399A.Ting,C.S., G.Rocap,J.King,and S.W.ChisholmBiol.Rev.61l:262-280.Schlesinger,W.H.1997.Biogeochemistry: An analysis2002.Cyanobacterialphotosynthesisintheof global change,2nd edn.AcademicPress,Sanoceans:the origins and significance of divergentDiego, CA.light-harvesting strategies.TrendsMicrobiol.10:134-Schwarzenbach,R.P.,P.Gschwend,andD.M.142.Twyman,R.M.2004.Principles of Proteomics.BIOSImboden.2002.EnvironmentalOrganicChemistry,2ndedn. Wiley and Sons, New York.Scientific Publishing,NewYork.Segers, R.1998.Methane production and methanevan Breemen, N.,E.W.Boyer, C.L. Goodale, et al.consumption:A review of processes underlying2002.Where did all thenitrogen go? Fate ofwetlandmethanefluxes.Biogeochemistry4l:23-51.nitrogen inputs to large watersheds in the north-Sensen,C.W.(ed.)2002.EssentialsofGenomicsandeasternUSA.Biogeochemistry57/58:267-293.Bioinformatics.Wiley and Sons,NewYorkvan Elsas,J.D.,J.T.Trevors,andE.M.H.WellingtonSigel, A., H. Sigel, and R. Sigel (eds) 2005. Metal Ions1997.Modern Soil Microbiology.Marcel Dekker,inBiological Systems,Vol.43.Biogeochemical CyclesofNew York.VanHamme,J.C.,A.Singh,and o.P.Ward.2003Elements.Marcel Dekker, NewYorkSnyder,L.and W.Champness.2003.MolecularRecent advances in petroleum microbiology.Genetics of Bacteria,2nd edn.American SocietyforMicrobiol.Mol.Biol.Rev.67:503-549Microbiology,Washington,DC.van Niel, C.B.1967.The education of a microbiolo-Spain, J.C., J.B.Hughes, and H.-J.Knackmuss (eds)gist: some reflections.Annu. Rev.Microbiol.21:1-30.2000.Biodegradation of Nitroaromatic CompoundsandExplosives.LewisPublishing,BocaRaton,FLvanNiftrik,L.A.J.A.Fuerst,J.S.S.Damste,J.GSpencer, J.F.T.and A.L.Ragout de Spencer (eds)Kuenen, M.S.M. Jetten, and M.Strous.2o04.The2004.EnvironmmentalMicrobiology:Methodsandpro-anammoxosome:anintracytoplasmiccompart-tocols.Humana Press,Totowa,NJ.ment in anammox bacteria.FEMs Microbiol.Lett.Staley.J.T.and A.-L.Reysenbach(eds)2002.233:7-31.Velvis, H.1997.Evaluation of the selective respirat-Biodiversity of Microbial Life:Foundation of Earth's bio-sphere. Wiley and Sons, New York.ory inhibition method for measuring the ratio ofStark,J.M.and S.C.Hart.1997.High ratesoffungal:bacterial activity in acid agricultural soils.Biol.nitrification and nitrate turnover in undisturbedFertil.Soils25:354-360.coniferousforests.Nature385:61-64.Waksman,S.A.1925.Soilmicrobiologyin1924:anStumm,W.and J.J.Morgan.1996.AquaticChem-attempt at an analysis and a synthesis. Soil Sci.istry:Chemical equilibriaand ratesinnatural waters,19:201-249.Waksman,S.A:1927.Principles of Soil Microbiology3rd edn. Wiley and Sons, New York.Sverdrup, K.A., A.C. Duxbury, and A.B. Duxbury.Williams and Wilkins,Baltimore,MD.Waksman, s.A.1945.Soil microbiology as a field of2003.AnIntroduction to theWorld's Oceans.McGraw-Hill, Boston, MA.science.Science 102:339-344.Sylvia, D.M.,J.J.Fuhrmann, P.G.Hartel, and D.A.Waksman,S.A.1952.Soil Microbiology.WileyandZuberer.2005.Principles and Application of SoilSons, New York
Rittmann, B.E. and P.L. McCarty. 2001. Environmental Biotechnology: Principles and applications. McGraw-Hill, Boston, MA. Rochelle, P.A. (ed.) 2001. Environmental Molecular Microbiology: Protocols and applications. Horizon Scientific, Wymondham, UK. Schaechter, M., J.L. Ingraham, and F.C. Niedhardt. 2006. Microbe. American Society for Microbiology Press, Washington, DC. Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61:262–280. Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change, 2nd edn. Academic Press, San Diego, CA. Schwarzenbach, R.P., P. Gschwend, and D.M. Imboden. 2002. Environmental Organic Chemistry, 2nd edn. Wiley and Sons, New York. Segers, R. 1998. Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51. Sensen, C.W. (ed.) 2002. Essentials of Genomics and Bioinformatics. Wiley and Sons, New York. Sigel, A., H. Sigel, and R. Sigel (eds) 2005. Metal Ions in Biological Systems, Vol. 43. Biogeochemical Cycles of Elements. Marcel Dekker, New York. Snyder, L. and W. Champness. 2003. Molecular Genetics of Bacteria, 2nd edn. American Society for Microbiology, Washington, DC. Spain, J.C., J.B. Hughes, and H.-J. Knackmuss (eds) 2000. Biodegradation of Nitroaromatic Compounds and Explosives. Lewis Publishing, Boca Raton, FL. Spencer, J.F.T. and A.L. Ragout de Spencer (eds) 2004. Environmental Microbiology: Methods and protocols. Humana Press, Totowa, NJ. Staley, J.T. and A.-L. Reysenbach (eds) 2002. Biodiversity of Microbial Life: Foundation of Earth’s biosphere. Wiley and Sons, New York. Stark, J.M. and S.C. Hart. 1997. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64. Stumm, W. and J.J. Morgan. 1996. Aquatic Chemistry: Chemical equilibria and rates in natural waters, 3rd edn. Wiley and Sons, New York. Sverdrup, K.A., A.C. Duxbury, and A.B. Duxbury. 2003. An Introduction to the World’s Oceans. McGraw-Hill, Boston, MA. Sylvia, D.M., J.J. Fuhrmann, P.G. Hartel, and D.A. Zuberer. 2005. Principles and Application of Soil CHAPTER I SIGNIFICANCE, HISTORY, AND CHALLENGES OF ENVIRONMENTAL MICROBIOLOGY 21 Microbiology, 2nd edn. Prentice Hall, Upper Saddle River, NJ. Taylor, C.D. and C.O. Wirsen. 1997. Microbiology and ecology of filamentous sulfur formation. Science 277:1483–1485. Tchobanoglous, G., F.L. Burton, and H.D. Stensel. 2002. Wastewater Engineering: Treatment and reuse. McGraw-Hill, New York. Ternes, T.A., A. Joss, and H. Seigrist. 2004. Scrutinizing personal care products. Environ. Sci. Technol. 38:393A–399A. Ting, C.S., G. Rocap, J. King, and S.W. Chisholm. 2002. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10:134– 142. Twyman, R.M. 2004. Principles of Proteomics. BIOS Scientific Publishing, New York. van Breemen, N., E.W. Boyer, C.L. Goodale, et al. 2002. Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57/58:267–293. van Elsas, J.D., J.T. Trevors, and E.M.H. Wellington. 1997. Modern Soil Microbiology. Marcel Dekker, New York. Van Hamme, J.C., A. Singh, and O.P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67:503–549. van Niel, C.B. 1967. The education of a microbiologist: some reflections. Annu. Rev. Microbiol. 21:1– 30. van Niftrik, L.A., J.A. Fuerst, J.S.S. Damsté, J.G. Kuenen, M.S.M. Jetten, and M. Strous. 2004. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol. Lett. 233:7–31. Velvis, H. 1997. Evaluation of the selective respiratory inhibition method for measuring the ratio of fungal:bacterial activity in acid agricultural soils. Biol. Fertil. Soils 25:354–360. Waksman, S.A. 1925. Soil microbiology in 1924: an attempt at an analysis and a synthesis. Soil Sci. 19:201–249. Waksman, S.A. 1927. Principles of Soil Microbiology. Williams and Wilkins, Baltimore, MD. Waksman, S.A. 1945. Soil microbiology as a field of science. Science 102:339–344. Waksman, S.A. 1952. Soil Microbiology. Wiley and Sons, New York. 9781405136471_4_001.qxd 1/15/08 9:21 Page 21
22CHAPTER1SIGNIFICANCE,HISTORY,AND CHALLENGESOFENVIRONMENTALMICROBIOLOGYWard, D.M.,M.M.Bateson,R.Weller, and A.L.Winogradsky,S.1949.Microbiologiedusol,problemesRuff-Roberts.1993.Ribosomal RNA analysis ofet methods: cinquante ans de recherches. Oeuvres com-microorganisms as they occur in nature.Adv.pletes.Masson, Paris.MicrobialEcol.12:219-286.Woese,C.R.1987.Bacterial evolution.Microbiol.Wetzel, R.G.2001.Limnology:Lake and river ecosystems,Rev.51:221-271.3rd edn.Academic Press, San Diego, CA.Woese,C.R.1992.Prokaryotic systematics:the evo-Wetzel,R.G.and G.E.Likens.2000.Limnologicallution of a science. In: A.Balows, H.G. Truper, M.Analyses,3rd edn.Springer-Verlag,NewYork.Dworkin, W. Harder, and K.-H. Schleifer (eds)3-18.Springer-White, D.C.1994. Is there anything else you needTheProkaryotes,2nd edn,pp.Verlag, New York.tounderstand aboutthemicrobiotathatcannotbeYoung, L. and C. Cerniglia (eds) 1995.Microbialderived from analysis of nucleic acids? Microbial Ecol.28:163-166.Transformation and Degradation of Toxic OrganicWhite,D.1995.The Physiology and Biochemistry ofChemicals.Wiley-Liss,New YorkProkaryotes. Oxford University Press, New York.Zhou, J., D.K. Thompson, Y. Zu, and J.M. Tiedje (eds)Whitman, W.B.,D.C.Coleman, and W.J.Wiebe.2004.Microbial Functional Genomics.Wiley-Liss,1998.Prokaryotes:the unseen majority.Proc.Hoboken, NJ.Natl.Acad.Sci.USA95:6578-6583.Zumft, W.G.1997.Cellbiologyand molecularbasis ofdenitrification.Microbiol.Mol.Biol.Rev.61:533-616.FURTHERREADINGCarter, J.P.and J.M.Lynch.1993. Immunological andchemistry,Vol.8,pp.239-272.Marcel Dekker,molecular techniques for studying the dynamic ofNew York.de Duve, C.2002.Life Evolving:Molecules, mind,andmicrobial populations and communities in soil.In: J.-M.Bollag and G. Stozky (eds) Soil Bio-meaning.Oxford University Press, Oxford
Ward, D.M., M.M. Bateson, R. Weller, and A.L. Ruff-Roberts. 1993. Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microbial Ecol. 12:219–286. Wetzel, R.G. 2001. Limnology: Lake and river ecosystems, 3rd edn. Academic Press, San Diego, CA. Wetzel, R.G. and G.E. Likens. 2000. Limnological Analyses, 3rd edn. Springer-Verlag, New York. White, D.C. 1994. Is there anything else you need to understand about the microbiota that cannot be derived from analysis of nucleic acids? Microbial Ecol. 28:163–166. White, D. 1995. The Physiology and Biochemistry of Prokaryotes. Oxford University Press, New York. Whitman, W.B., D.C. Coleman, and W.J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578–6583. 22 CHAPTER I SIGNIFICANCE, HISTORY, AND CHALLENGES OF ENVIRONMENTAL MICROBIOLOGY Winogradsky, S. 1949. Microbiologie du sol, problémes et methods: cinquante ans de recherches. Oeuvres completes. Masson, Paris. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271. Woese, C.R. 1992. Prokaryotic systematics: the evolution of a science. In: A. Balows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds) The Prokaryotes, 2nd edn, pp. 3–18. SpringerVerlag, New York. Young, L. and C. Cerniglia (eds) 1995. Microbial Transformation and Degradation of Toxic Organic Chemicals. Wiley-Liss, New York. Zhou, J., D.K. Thompson, Y. Zu, and J.M. Tiedje (eds) 2004. Microbial Functional Genomics. Wiley-Liss, Hoboken, NJ. Zumft, W.G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61:533–616. FURTHER READING Carter, J.P. and J.M. Lynch. 1993. Immunological and molecular techniques for studying the dynamic of microbial populations and communities in soil. In: J.-M. Bollag and G. Stozky (eds) Soil Biochemistry, Vol. 8, pp. 239–272. Marcel Dekker, New York. de Duve, C. 2002. Life Evolving: Molecules, mind, and meaning. Oxford University Press, Oxford. 9781405136471_4_001.qxd 1/15/08 9:21 Page 22
2Formation of the Biosphere:Key Biogeochemical andEvolutionaryEventsThis chapterprovidesan overviewof thehistoryof Earth and itsforms of life.Wereviewstate-of-the-arttools,principles,and logicused to generateinformation addressing how our world progressedfrom its ancientprebiotic stateto its contemporarybioticstate.Keyeventsincluded:planetarycooling,geochemicalreactionsatmineral surfacesonthefloorofprimordial seas,an"RNAworld",developmentofprimitivecells,the"lastuniversalanoxygenicphotosynthesis,oxygenicCoophotosynthesis, therise of oxygen in the atmosphere, the developmentofthe ozone shield, and theevolution of higherforms of eukaryotes.The chapter closesbyreviewing endosymbiotictheory andkeybiochemical andstructural contrastsbetweenprokaryoticandeukaryoticcellsChapter 2 Outline2.1Issues and methods in Earth's history and evolution2.2Formation of earlyplanet Earth2.3Did lifereach Earth from Mars?2.4Plausible stages in the development of early life2.5Mineral surfaces:theearlyiron/sulfur world could havedriven biosynthesis2.6Encapsulation:a key to cellular life2.7Aplausibledefinition of thetreeof life's"lastuniversal common ancestor2.85The rise of oxygen2.9Evidenceforoxygen and cellular lifein the sedimentaryrecord2.10 The evolution of oxygenic photosynthesis2.ll Consequences of oxygenicphotosynthesis:molecularoxygen in the atmosphereand largepools oforganic carbon2.12 Eukaryotic evolution:endosymbiotic theory and theblending of traits from Archaea and Bacteria
2 Formation of the Biosphere: Key Biogeochemical and Evolutionary Events This chapter provides an overview of the history of Earth and its forms of life. We review state-ofthe-art tools, principles, and logic used to generate information addressing how our world progressed from its ancient prebiotic state to its contemporary biotic state. Key events included: planetary cooling, geochemical reactions at mineral surfaces on the floor of primordial seas, an “RNA world”, development of primitive cells, the “last universal common ancestor”, anoxygenic photosynthesis, oxygenic photosynthesis, the rise of oxygen in the atmosphere, the development of the ozone shield, and the evolution of higher forms of eukaryotes. The chapter closes by reviewing endosymbiotic theory and key biochemical and structural contrasts between prokaryotic and eukaryotic cells. Chapter 2 Outline 2.1 Issues and methods in Earth’s history and evolution 2.2 Formation of early planet Earth 2.3 Did life reach Earth from Mars? 2.4 Plausible stages in the development of early life 2.5 Mineral surfaces: the early iron/sulfur world could have driven biosynthesis 2.6 Encapsulation: a key to cellular life 2.7 A plausible definition of the tree of life’s “last universal common ancestor” 2.8 The rise of oxygen 2.9 Evidence for oxygen and cellular life in the sedimentary record 2.10 The evolution of oxygenic photosynthesis 2.11 Consequences of oxygenic photosynthesis: molecular oxygen in the atmosphere and large pools of organic carbon 2.12 Eukaryotic evolution: endosymbiotic theory and the blending of traits from Archaea and Bacteria 9781405136471_4_002.qxd 1/15/08 8:47 Page 23
24CHAPTER2FORMATIONOFTHEBIOSPHERE:KEYBIOGEOCHEMICALAND EVOLUTIONARY EVENTS2.IISSUESANDMETHODSINEARTH'SHISTORYANDEVOLUTIONHowdoweknowwhathappened long ago?How old is the Earth?.How did life begin?When did life begin?How have life and the Earth changed through the ages?heseand related questionshave likelybeen pondered byhumansforthousands of years.In our questfor understandingextant micro-organisms that dwell inbiospherehabitats, itis essential toplace themin historical, metabolic,and evolutionary context.To achieve this,we wouldideally be able to superimpose continuous,independent timelinesderived from the geologic record, the fossil record, the climate record,the evolutionary record,and the molecular phylogeneticrecord.Con-ceivably this superimposition could allow cause-and-effect interactionstobe documented,linking specificevents such as changes in atmosphericcomposition,glaciation,tectonicmovements,and theriseandfall of bioticadaptations.This ideal has not yet been achieved at high resolution.Instead,wehave onlyglimpses here and there of our planet's complex, shroudedpast (Table 2.1).However, recent advances have made progress towardachievinga synthesisthatmaysolvethepuzzlesofEarth'shistory.Thekeytools used to discover and decipher planetary historyare listed inTable2.2 and further explained in Boxes 2.1 and 2.2.By knowing Earth's globaldistributionof land forms,rocks,andminerals,geologistshaveidentifiedwheretolookforcluesaboutancientEarthandlife'sbeginnings(Figure2.1).Discovery of the clues and their assembly into a convincing,coher-ent body of knowledge is ongoing-reliant upon insights from geology,paleontology,nuclear chemistry,analytical chemistry,experimental bio-chemistry,aswell as molecular phylogeny (Table2.2).2.2FORMATIONOFEARLYPLANETEARTHExplosionsfromsupernovae4.6x1o°yearsagoarethoughttohave instigatedtheformation of our solar system (Nisbet and Sleep,2ool).Theinner planets(Earth,Mars,Venus,Mercury)wereproduced fromcolli-sions between planetisemels.EarlyEarth featured huge pools of surfacemagmawhich cooledrapidly(~2×1oyears)to~100°.Later,watercon-densed,creatingtheoceans.Volcanismandbombardmentbymeteorswerecommon.Thesecollisionsarethoughttohaverepeatedlyheatedtheoceansto >1oo°C, causing extensive vaporizing of water.Our moon was likelyformed 4.5×1o°yearsagowhenmoltenmantlewasejected into orbit
2.1 ISSUES AND METHODS IN EARTH’S HISTORY AND EVOLUTION 24 CHAPTER 2 FORMATION OF THE BIOSPHERE: KEY BIOGEOCHEMICAL AND EVOLUTIONARY EVENTS • How do we know what happened long ago? • How old is the Earth? • How did life begin? • When did life begin? • How have life and the Earth changed through the ages? These and related questions have likely been pondered by humans for thousands of years. In our quest for understanding extant microorganisms that dwell in biosphere habitats, it is essential to place them in historical, metabolic, and evolutionary context. To achieve this, we would ideally be able to superimpose continuous, independent timelines derived from the geologic record, the fossil record, the climate record, the evolutionary record, and the molecular phylogenetic record. Conceivably this superimposition could allow cause-and-effect interactions to be documented, linking specific events such as changes in atmospheric composition, glaciation, tectonic movements, and the rise and fall of biotic adaptations. This ideal has not yet been achieved at high resolution. Instead, we have only glimpses here and there of our planet’s complex, shrouded past (Table 2.1). However, recent advances have made progress toward achieving a synthesis that may solve the puzzles of Earth’s history. The key tools used to discover and decipher planetary history are listed in Table 2.2 and further explained in Boxes 2.1 and 2.2. By knowing Earth’s global distribution of land forms, rocks, and minerals, geologists have identified where to look for clues about ancient Earth and life’s beginnings (Figure 2.1). Discovery of the clues and their assembly into a convincing, coherent body of knowledge is ongoing – reliant upon insights from geology, paleontology, nuclear chemistry, analytical chemistry, experimental biochemistry, as well as molecular phylogeny (Table 2.2). 2.2 FORMATION OF EARLY PLANET EARTH Explosions from supernovae 4.6 × 109 years ago are thought to have instigated the formation of our solar system (Nisbet and Sleep, 2001). The inner planets (Earth, Mars, Venus, Mercury) were produced from collisions between planetisemels. Early Earth featured huge pools of surface magma which cooled rapidly (~2 × 106 years) to ~100°C. Later, water condensed, creating the oceans. Volcanism and bombardment by meteors were common. These collisions are thought to have repeatedly heated the oceans to >100°C, causing extensive vaporizing of water. Our moon was likely formed 4.5 × 109 years ago when molten mantle was ejected into orbit 9781405136471_4_002.qxd 1/15/08 8:47 Page 24