88.4 Between g-phase and I-phase for mass transfer 8.4.1 Equation of rate for mass transfer with convection .Total equation of rate in partial pressure: difference According to NA= KG(PGP =K(C-CL) N与 G-phase or: Liquid-p浓度和界面浓度有关。 But:(x) This: interface~假设的; (2)在一些特殊情况下它是存在,但很难测定。 而:G~L主体的浓度是可以测定的。 类似于传热~用冷热流体的进出口温度, 传质~用主体浓度。 令:C1=(1/H)p1*andC=(1/Hp;代入上式:
一.Total equation of rate in partial pressure difference ∵According to NA= kG(pG-pi ) = kL(Ci-CL) NA与G-phase or Liquid-p浓度和界面浓度有关。 But : ⑴This interface ~假设的; ⑵ 在一些特殊情况下它是存在,但很难测定。 而:G~ L主体的浓度是可以测定的。 ∴ 类似于传热~用冷热流体的进出口温度, 传质~用主体浓度。 令:CL=(1/H)pL* and Ci=(1/H)pi 代入上式: 8.4.1 Equation of rate for mass transfer with convection §8.4 Between g-phase and l-phase for mass transfer
8.4.1 Equation of rate for mass transfer with convection I Individual coefficient in LP N L Pi-pi A p1)= H Individual coefficient in GP N pG-p A 总传质系数 Overall coefficient 11H 令 G G 总传质推动力(两相) Then K.(PG-pr Overall driving force
8.4.1 Equation of rate for mass transfer with convection G G L 1 1 H = + K k k 令: * Then : N = K (p - p ) A G G L G i A G p - p N = 1 k * L i L * A i L L k p - p N = (p - p ) = H H k 总传质系数 Overall coefficient 总传质推动力(两相) Overall driving force Individual coefficient in GP Individual coefficient in LP
8.4.1 Equation of rate for mass transfer with convection 二传质速率方程的各种表达形式 Interpretations for table8-4)/()与相有关; Flux for mass transfer (2)不同因次的表 达方法有关 传质通量(NA) g-p 传质系数×传质推动力 单相内 不同相 两相内g Kmol/m-sI 压力:atm,pa 不同因次质量: kmol m 表达形式很多,见 Table8-4 分率了x.y X Y
二.传质速率方程的各种表达形式 (Interpretations for table 8-4) 1.Flux for mass transfer ∵ 传质通量(NA) =传质系数×传质推动力 ∴表达形式很多,见Table 8-4. 8.4.1 Equation of rate for mass transfer with convection ⑴与相有关; ⑵不同因次的表 达方法有关。 [Kmol/m2·s]
8.4.1 Equation of rate for mass transfer with convection Dimensionless Numbers for mass-transfer (see P19 对流条件下的传质,且在一定温度、压力条件下 有关的参数:p、u、D、μ、d、k(对流传质系数) 类似于对流传热。 对流传质的无因次准数有两个:Sh、Sc 1. Sherwood number Sh=kd/D~表征了对流传质与分子扩散的关系 2. Schimidt number Sc=pu/(pD)~表征了流动与传质的关系 Obviously: Sh=f (Re, Sc) 目的:求出对流传质系数,k=f(p,u,d、D)
三.Dimensionless Numbers for mass-transfer (see P19) 8.4.1 Equation of rate for mass transfer with convection ∵对流条件下的传质,且在一定温度、压力条件下 ∴有关的参数:ρ、u、D、μ、d、k(对流传质系数) 类似于对流传热。 对流传质的无因次准数有两个:Sh、Sc 1.Sherwood number Sh =kd/D ~ 表征了对流传质与分子扩散的关系 2.Schimidt number Sc=μ/(ρ D) ~ 表征了流动与传质的关系 Obviously: Sh=f(Re, Sc) 目的:求出对流传质系数, k=f(ρ, u, d, D)→K
8.4.2 Steps of controlling resistance for mass-transfer For example a具有申联电路的特征 即总阻力=气膜阻力+液膜阻力 b实验证明:对于一定吸收设备水溶液体系, kL~103m/s, kG10-3w104kmollmz-atm'sI EorH对Kc有重要影响 E or H: very high very low
For example: a.具有串联电路的特征 即总阻力=气膜阻力+液膜阻力 b.实验证明:对于一定吸收设备水溶液体系, k L ~ 10-3m/s, k G ~ 10-3~10-4 [kmol/m2·atm·s] ∴ E or H对KG有重要影响 E or H :very high ~ very low 8.4.2 Steps of controlling resistance for mass-transfer. G G L 1 1 H = + K k k