Peak ripple value fejo Transition band Peak ripple value oncan Passband Stopband edge edge frequency frequency Transition Figure 7. 1 Typical magnitude specifications for a digital owpass filter 2021年1月27日1时46分
2021年1月27日1时46分 Passband edge frequency Stopband edge frequency Peak ripple value Peak ripple value Transition band
6. 1 Concepts on Digital Filter Passband defined by 0≤<O Error bound Magnitude 1-8 3G(e o )<1+5, forlo)sa Stopband defined by ≤O≤丌 Error bound Magnitude G(e10)≤6,fro,≤l≤丌 Transition band .<0<O 2021年1月27日1时46分
2021年1月27日1时46分 1 1 ( ) j p p p G e for − + Passband 0 p Magnitude p defined by Error bound Stopband defined by s Error bound s Magnitude ( ) , j s s G e for 6.1 Concepts on Digital Filter Transition band p s
6. 1 Concepts on Digital Filter o Note The frequency response G(elo)of a digital filter is a periodic function of a, and the magnitude response of a real-coefficient digital filter is an even function of a As a result the digital filter specifications are given only for the range 0≤≤x 2021年1月27日1时46分
2021年1月27日1时46分 Note: The frequency response ( ) j G e filter is a periodic function of ω, and the magnitude response of a real-coefficient digital filter is an even function of ω. of a digital 6.1 Concepts on Digital Filter As a result, the digital filter specifications are given only for the range 0
6. 1 Concepts on Digital Filter o Digital filter specifications are often given in terms of loss function A()=20l9G(°0 in dB. Thus Peak passband ripple 20l g SdB Minimum stopband attenuation as =-20log(S ) dB 2021年1月27日1时46分
2021年1月27日1时46分 Digital filter specifications are often given in terms of loss function, ( ) 20log10 ( ) j A G e = − in dB. Thus Peak passband ripple Minimum stopband attenuation p p = − − 20log 1 10 ( ) dB s s = −20log10 ( )dB 6.1 Concepts on Digital Filter
6.1 Concepts on Digital Filter o The magnitude response specifications for a digital lowpass filter may alternatively be given I a normalized form: The maximum value of the magnitude in passband is assumed to be unity. the maximum passband deviation denoted as 1/1+E is given by the minimum value of the magnitude in the passband The maximum stopband magnitude is denoted by 1/A. 2021年1月27日1时46分
2021年1月27日1时46分 ➢ The maximum value of the magnitude in passband is assumed to be unity. The magnitude response specifications for a digital lowpass filter may alternatively be given I a normalized form: ➢ The maximum passband deviation, denoted as is given by the minimum value of the magnitude in the passband. 6.1 Concepts on Digital Filter 2 1 1+ ➢ The maximum stopband magnitude is denoted by 1/A