北方工业大学 硕士研究生学位论文 UNIVERS 300KA大型预焙铝电解槽 电热场的计算分析 学生姓名 王沙沙 学 2013312110128 学科(专业学位) 控制科学与工程 研究方向冶金过程检测与控制 师 曾水平 2016年5月10日
北方工业大学学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行 研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其 他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的 个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结 果由本人承担。 学位论文作者签名:王 日期:2016年月o日 学位论文使用授权书 学位论文作者完全了解北方工业大学有关保留和使用学位论文的规定, 即:研究生在校攻读学位期间论文工作的知识产权单位属北方工业大学。学 校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许学位 论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以允许采 用影印、缩印或其它复制手段保存、汇编学位论文(保密的学位论文在解密 后适用于本授权书)。 口保密论文注释:经本人申请,学校批准,木学位论文定为保密论文,密 期限:年,自年月日起至年月日 止,解密后适用本授权书。 M非保密论文注释:本学位论文不属于保密范围,适用本授权书 本人签名:王日期:206年明月日 导师签名:n1y 日期:26/6,(、/0
300KA大型预焙铝电解槽电热场的计算分析 摘要 在现代铝生产过程中,生产铝的主要设备一一铝电解槽,其中存在着多种物 理场,包括电场、热场、磁场、应力场、流场等。在这些物理场中每一个物理场 都不是相互独立的,而是相互影响的,每一种物理场都会对其他的几种物理场产 生或大或小的影响,关系非常复杂。在这些物理场中,电场和热场是其他物理场 的基础,所以电热场的某些参数值会对铝生产带来一定的影响,具体的影响主要 包括水平电流的大小、槽体电热平衡、槽膛伸腿长度、铝液界面平稳度,进而就 会影响电流的效率、能耗多少、槽体部分结构的寿命等经济技术指标。在电热场 的研究中,直接对某些参数进行测量难度大、工作量也大,而且只能测量槽体某 些关键部位。本课题采用数值仿真的方法对铝电解槽的电热场进行了计算机仿真, 从而达到优化生产指标的目的。 本课题利用有限元分析软件 COMSOL Multiphysics,根据某设计院铝电解槽 的设计图纸以及它的结构和物理参数建立了铝电解槽的电热场数学物理模型。而 且在计算仿真时,本课题会按照槽体长轴和短轴将槽体切开,取整个槽体的四分 之一进行计算仿真。在将铝电解槽的电热场看做稳态场的前提下,对电热场进行 数学计算时,耦合计算导电的拉普拉斯方程和有内热源的导热泊松方程。 本课题首先仿真计算了稳定生产情况下铝电解槽的电压分布和温度分布,并 分析讨论其分布的合理性。然后计算了改变阳极保温材料的厚度和铝电解槽换极 工艺两种情况下,电解槽温度场的变化情况。当阳极保温材料厚度由160mm降 为4mm时,计算出电解槽最髙温度基本保持不变,最低温度从128℃下降到79℃; 本文还计算了更换阳极时新阳极的温度对铝电解槽的影响,计算结果表明新加入 的阳极的温度越髙,槽体最低温度越高,新阳极周围的温度也会随着升高。本课 题瞬态计算了更换的新阳极的温度变化情况,计算结果表明通过热传递的方式阳 极被慢慢加热。通过这些计算能够为铝生产提供指导。 关键词:铝电解槽,电热场, COMSOL Multiphysics
I 300KA 大型预焙铝电解槽电热场的计算分析 摘 要 在现代铝生产过程中,生产铝的主要设备——铝电解槽,其中存在着多种物 理场,包括电场、热场、磁场、应力场、流场等。在这些物理场中每一个物理场 都不是相互独立的,而是相互影响的,每一种物理场都会对其他的几种物理场产 生或大或小的影响,关系非常复杂。在这些物理场中,电场和热场是其他物理场 的基础,所以电热场的某些参数值会对铝生产带来一定的影响,具体的影响主要 包括水平电流的大小、槽体电热平衡、槽膛伸腿长度、铝液界面平稳度,进而就 会影响电流的效率、能耗多少、槽体部分结构的寿命等经济技术指标。在电热场 的研究中,直接对某些参数进行测量难度大、工作量也大,而且只能测量槽体某 些关键部位。本课题采用数值仿真的方法对铝电解槽的电热场进行了计算机仿真, 从而达到优化生产指标的目的。 本课题利用有限元分析软件 COMSOL Multiphysics,根据某设计院铝电解槽 的设计图纸以及它的结构和物理参数建立了铝电解槽的电热场数学物理模型。而 且在计算仿真时,本课题会按照槽体长轴和短轴将槽体切开,取整个槽体的四分 之一进行计算仿真。在将铝电解槽的电热场看做稳态场的前提下,对电热场进行 数学计算时,耦合计算导电的拉普拉斯方程和有内热源的导热泊松方程。 本课题首先仿真计算了稳定生产情况下铝电解槽的电压分布和温度分布,并 分析讨论其分布的合理性。然后计算了改变阳极保温材料的厚度和铝电解槽换极 工艺两种情况下,电解槽温度场的变化情况。当阳极保温材料厚度由 160mm 降 为40mm时,计算出电解槽最高温度基本保持不变,最低温度从128℃下降到79℃; 本文还计算了更换阳极时新阳极的温度对铝电解槽的影响,计算结果表明新加入 的阳极的温度越高,槽体最低温度越高,新阳极周围的温度也会随着升高。本课 题瞬态计算了更换的新阳极的温度变化情况,计算结果表明通过热传递的方式阳 极被慢慢加热。通过这些计算能够为铝生产提供指导。 关键词:铝电解槽,电热场,COMSOL Multiphysics
Calculation of thermal-Electric field in 300Ka Prebaked anode Aluminum reduction cell Abstract In the modern production of aluminum industry, aluminum reduction cell is the main equipment. There are a few kinds of physical fields in the cell, including electric field. thermalfield. magnetic field. stress field. flow field and so on. each of these physical fields is not independent of each other, but interactional. Each physical field will have a large or small effect on other physical fields and the relationship is very complex. The thermal-electric field is the basis of other physical fields, and it has a direct impact on aluminum production, including horizontal current, thermal-electric balance, groove chamber shape, aluminum liquid inter face, and then it will have impact on current efficiency, power consumption per ton aluminum, life of the cell and the other economic and technical index In the study of thermal-electric field direct measurement of some parameters is difficult and needs huge work and only some key arts can be measured. In this paper, numerical simulation method is used to simulate the thermal-electric field to realize the optimization production In this paper, the thermal-electric model is established based on the cell data of a 300 KA large pre-baked anode aluminum reduction cell using FEM Analysis Software of COMSOL Multiphysics. And in the simulation, take the whole 1/4 cell cutting along long and short axis symmetrical surface as the research object. The thermal-electric field of aluminum reduction cell will be counted a steady-state field andsolve coupling Laplace equation and Poisson equation In this paper, the voltage distribution and temperature distribution of the aluminum reduction cell are calculated in the stable production process of the cell and discuss its rationality. Then the thermal field of the cell is calculated according to replacing the anode and changing the thickness of insulating material of anode. When the thickness of insulation material is reduced from 160mm to 40mm the maximum temperature of the cell remained unchanged and the lowest temperature decreased from 128 to 79degrees Celsius. Effect of temperature of new anode on the cell shows
II Calculation of Thermal-Electric Field in 300KA Prebaked Anode Aluminum Reduction Cell Abstract In the modern production of aluminum industry,aluminum reduction cell is the main equipment.There are a few kinds of physical fields in the cell, including electric field, thermalfield, magnetic field, stress field, flow field and so on.Each of these physical fields is not independent of each other, but interactional. Each physical field will have a large or small effect on other physical fields and the relationship is very complex. The thermal-electric field is the basis of other physical fields, and it has a direct impact on aluminum production, including horizontal current, thermal-electric balance,groove chamber shape, aluminum liquid interface,and then it will have impact on current efficiency,power consumption per ton aluminum, life of the cell and the other economic and technical index.In the study of thermal-electric field, direct measurement of some parameters is difficult and needs huge work and only some key parts can be measured. In this paper,numerical simulation method is used to simulate the thermal-electric field to realize the optimization production. In this paper, the thermal-electric model is established based on the cell data of a 300 KA large pre-baked anode aluminum reduction cell using FEM Analysis Software of COMSOL Multiphysics. And in the simulation, take the whole 1/4 cell cutting along long and short axis symmetrical surface as the research object.The thermal-electric field of aluminum reduction cell will be counted a steady-state field andsolve coupling Laplace equation and Poisson equation. In this paper, the voltage distribution and temperature distribution of the aluminum reduction cell are calculated in the stable production process of the cell and discuss its rationality. Then the thermal field of the cell is calculated according to replacing the anode and changing the thickness of insulating material of anode. When the thickness of insulation material is reduced from 160mm to 40mm,the maximum temperature of the cell remained unchanged and the lowest temperature decreased from 128 to 79degrees Celsius. Effect of temperature of new anode on the cell shows
that if the temperature of new anode is higher, the minimum temperature of the cell and the ambient temperature is much higher. Then the change of temperature of new anode is calculated transiently. The result shows that the anode is heated through heat transportation. All the results will provide guidelines for aluminum production Key Words: aluminum reduction cell, thermal-electric field, COMSOL Multiphysics
III that if the temperature of new anode is higher, the minimum temperature of the cell and the ambient temperature is much higher. Then the change of temperature of new anode is calculated transiently. The result shows that the anode is heated through heat transportation. All the results will provide guidelines for aluminum production. Key Words: aluminum reduction cell,thermal-electric field,COMSOL Multiphysics