7.2 Rule of Mixture (ROM) Assuming Conditions The bond between the fibers and the matrix is good. The load on the composite must be a tensile load parallel to the longitudinal axis of the fibers. PDF文件使用"pdfFactory Pro'”试用版本创建um,fineprint.com,cn
7.2 Rule of Mixture (ROM) Assuming Conditions v The bond between the fibers and the matrix is good. v The load on the composite must be a tensile load parallel to the longitudinal axis of the fibers. PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿwww.fineprint.com.cn
7.2.1 Fiber-reinforced-composite material undergoing isostrain loading conditions The load is carried by both the fibers and the matrix acting to share the burden:F=F+Fm Fe=Oc Ac F可AyFm=OmAm oAc=可4y+OmAm Veoc=Vfot+Vm Om o。=Yyor+Vmom A:area V:volume v:volume fraction o:stress c,fand m refer to the composite,fibers and matrix,respectively. PDF文件使用"pdfFactory Pro”试用版本创建ww,fineprint..com.c如
Vcsc = Vf sf + Vm sm A: area V: volume v: volume fraction s: stress c, f and m refer to the composite, fibers and matrix, respectively. 7.2.1 Fiber-reinforced-composite material undergoing isostrain loading conditions The load is carried by both the fibers and the matrix acting to share the burden:F = Ff + Fm Fc= sc Ac Ff= sf Af Fm= sm Am sc Ac = sf Af + sm Am sc = vf sf + vm sm PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.com.cn
The ROM in terms of the elastic modulus for the isostrain situation o。=Vyof+Vmom f=ErEf,Om=Em 8m,Oc=EcSc EeE。=VES+Vm Em Em s=unit deformation,strain Assuming that both the fibers and the matrix will stretch or deform the same amount in withstanding the tensile load, Ee=Ervr+Em Vm PDF文件使用"pdfFactory Pro'”试用版本创建um,fineprint.com,cn
sf = Ef ef ,sm = Em em ,sc = Ec ec e = unit deformation, strain Ec ec = vf Ef ef + vm Em em Ec = Ef vf + Em vm sc = vf sf + vm sm The ROM in terms of the elastic modulus for the isostrain situation Assuming that both the fibers and the matrix will stretch or deform the same amount in withstanding the tensile load, PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿwww.fineprint.com.cn
Solving ratio F/Fm F=Ft+Fm F。=o。AeFF可AFm=omAm =4-V,"_0业-Y Er f=Erf,Om=Em Sm m Em PDF文件使用"pdfFactory Pro”试用版本创建ww,fineprint..com,cn
sf = Ef ef ,sm = Em em m m f f m m f f m m f f m m f f m f v v V V V l V l A A F F s s s s s s s s = = = = / / Solving ratio Ff /Fm m f m f E E = s s m m f f m f E v E v F F = Fc= sc Ac Ff= sf Af Fm= sm Am F = Ff + Fm PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.com.cn
Prediction of elastic modulus of composites (1) Assuming fiber length is in the direction of the loading 56.0 42.0 E1=YmEm+VrEr 28.0 14.0 0.5 0.6 0.7 PDF文件使用"pdfFactory Pro”试用版本创建ww,fineprint.com.cn
Prediction of elastic modulus of composites (1) 0.5 0.6 0.7 E 1 / 1 0 3 M P a vf Assuming fiber length is in the direction of the loading E1 = vmEm + vfEf 56.0 42.0 28.0 14.0 PDF 文件使用 "pdfFactory Pro" 试用版本创建 Ìwww.fineprint.com.cn