• Problem Setup • Non-stationary Online Learning • Universal Online Learning • Conclusion
文件格式: PDF大小: 9.3MB页数: 77
• Multi-Armed Bandits • Explore-Then-Exploit • Upper Confidence Bound • Linear Bandits • LinUCB Algorithm • Generalized Linear Bandits • Advanced Topics
文件格式: PDF大小: 13.8MB页数: 50
• Problem Setup • Multi-Armed Bandits • Bandit Convex Optimization • Advanced Topics
文件格式: PDF大小: 15.78MB页数: 63
• Two-player Zero-sum Games • Minimax Theorem • Repeated Play • Faster Convergence via Adaptivity
文件格式: PDF大小: 9.25MB页数: 33
• Optimistic Online Mirror Descent • A Unified Framework • Small-Loss bound • Gradient-Variance bound • Gradient-Variation bound
文件格式: PDF大小: 16.17MB页数: 66
• Motivation • Small-Loss Bounds • Small-Loss bound for PEA • Self-confident Tuning • Small-Loss bound for OCO
文件格式: PDF大小: 11.2MB页数: 52
• Algorithmic Framework • Regret Analysis • Interpretation from Primal-Dual View • Follow-the-Regularized Leader
文件格式: PDF大小: 13.11MB页数: 59
• Problem Setup • Algorithms • Connection to Online Convex Optimization
文件格式: PDF大小: 9.01MB页数: 42
• Online Learning • Online Convex Optimization • Convex Functions • Strongly Convex Functions • Exp-concave Functions
文件格式: PDF大小: 20.81MB页数: 84
• GD for Smooth Optimization • Smooth and Convex Functions • Smooth and Strongly Convex Functions • Nesterov’s Accelerated GD • Extension to Composite Optimization
文件格式: PDF大小: 18.3MB页数: 74










