1 Introduction 1.1 GUI and Basic functions 1.1.1 Command Window 1.1.2 Command History 1.1.3 MatLab Help 2 Data in MatLab 2.1 Manipulating data 2.1.1 Creating Objects 2.1.2 Operators 3 Graphics 3.1 Use plotting tools 3.2 Use the command interface 3.2.1 Basic plots 3.2.2 Adding Plots to an Existing Graph 3.2.3 Multiple Plots in One Figure 3.2.4 Controlling the Axes 3.2.5 Axis Labels and Titles 3.3 Mesh and Surface Plots 3.4 Creating Specialized Plots 3.5 Advanced plotting
文件格式: PDF大小: 684.41KB页数: 56
1 Numerical optimization methods in R 1.1 Root-finding in one dimension 1.1.1 Bisection method 1.1.2 Brent’s method 1.1.3 Newton’s method 1.1.4 Fisher scoring 1.2 multivariate optimization 1.2.1 Newton’s method and Fisher scoring 1.3 Numerical Integration 1.4 Maximum Likelihood Problems 1.5 Optimization Problems 1.5.1 One-dimension Optimization 1.5.2 multi-dimensional Optimization 1.6 Linear Programming
文件格式: PDF大小: 573.93KB页数: 41
1 EM optimization method 1.1 EM algorithm 1.2 Convergence 1.3 Usage in exponential families 1.4 Usage in finite normal mixtures 1.5 Variance estimation 1.5.1 Louis method 1.5.2 SEM algorithm 1.5.3 Bootstrap method 1.5.4 Empirical Information 1.6 EM Variants 1.6.1 Improving the E step 1.6.2 Improving the M step 1.7 Pros and Cons
文件格式: PDF大小: 628.39KB页数: 44
1 Markov Chain Monte Carlo Methods 1.4 The Gibbs Sampler 1.4.1 The Slice Gibbs Sampler 1.5 Monitoring Convergence 1.5.1 Convergence diagnostics plots 1.5.2 Monte Carlo Error 1.5.3 The Gelman-Rubin Method 1.6 WinBUGS Introduction 1.6.1 Building Bayesian models in WinBUGS 1.6.2 Model specification in WinBUGS 1.6.3 Data and initial value specification 1.6.4 Compiling model and simulating values
文件格式: PDF大小: 652.5KB页数: 54
《实用统计软件》课程教学资源(阅读材料)A History of Markov Chain Monte Carlo——Subjective Recollections from Incomplete Data
文件格式: PDF大小: 235.64KB页数: 27
1 Markov Chain Monte Carlo Methods 1.1 Introduction 1.1.1 Integration problems in Bayesian inference 1.1.2 Markov Chain Monte Carlo Integration 1.1.3 Markov Chain 1.2 The Metropolis-Hastings Algorithm 1.2.1 Metropolis-Hastings Sampler 1.2.2 The Metropolis Sampler 1.2.3 Random Walk Metropolis 1.2.4 The Independence Sampler 1.3 Single-component Metropolis Hastings Algorithms 1.4 Application: Logistic regression
文件格式: PDF大小: 699.21KB页数: 53
《实用统计软件》课程教学资源(阅读材料)T. DiCiccio and B.Efron(1996), Bootstrap Confidence Intervals, Statistical Science, 3,189-228
文件格式: PDF大小: 439.58KB页数: 40
1 Bootstrap and Jackknife 1.1 The Bootstrap 1.1.1 Bootstrap Estimation of Standard Error 1.1.2 Bootstrap Estimation of Bias 1.2 Jackknife 1.3 Jackknife-after-Bootstrap 1.4 Bootstrap Confidence Intervals 1.4.1 The Standard Normal Bootstrap Confidence Interval 1.4.2 The Percentile Bootstrap Confidence Interval 1.4.3 The Basic Bootstrap Confidence Interval 1.4.4 The Bootstrap t interval 1.5 Better Bootstrap Confidence Intervals 1.6 Application: Cross Validation
文件格式: PDF大小: 709.98KB页数: 49
1 Monte Carlo Methods in Inference 1.1 Monte Carlo Methods for Estimation 1.1.1 Monte Carlo Estimation and Standard Error 1.1.2 Estimation of MSE 1.2 Estimating a confidence level 1.3 Monte Carlo Methods for Hypothesis Tests 1.4 Empirical Type I error rate 1.4.1 Power of a Test 1.4.2 Power Comparisons 1.5 Application: “Count Five” Test for Equal Variance
文件格式: PDF大小: 637.97KB页数: 43
《实用统计软件》课程教学资源(阅读材料)图像合成方面应用的一个介绍 Monte Carlo Integration
文件格式: PPT大小: 5.38MB页数: 53