一、复数的概念 二、复数的代数运算 三、小结与思考
文件格式: PPT大小: 1.3MB页数: 19
§1.1. Sums and Products §1.2. Basic Algebraic Properties §1.3. Further Properties §1.4. Moduli §1.5. Conjugates §1.6. Exponential Form §1.7. Products and Quotients in Exponential Form §1.8. Roots of Complex Numbers §1.9. Examples §1.10. Regions in the Complex Plane
文件格式: PDF大小: 1.05MB页数: 19
§2.1. Functions of a Complex Variable §2.2. Mappings §2.3. The Exponential Function and its Mapping Properties §2.4. Limits §2.5. Theorems on Limits §2.6. Limits Involving the Point at Infinity §2.7. Continuity §2.8. Derivatives §2.9. Differentiation Formulas §2.10. Cauchy-Riemann Equations §2.11. Necessary and Sufficient Conditions for Differentiability §2.12. Polar Coordinates §2.13. Analytic Functions §2.14. Examples §2.15. Harmonic Functions
文件格式: PDF大小: 1.62MB页数: 25
§3.1. The Exponential Function §3.2. The Logarithmic Function §3.3. Branches and Derivatives of Logarithms §3.4. Some Identities on Logarithms §3.5. Complex Power Functions §3.6. Trigonometric Functions §3.7. Hyperbolic Functions §3.8. Inverse Trigonometric and Hyperbolic Functions
文件格式: PDF大小: 439.03KB页数: 11
§4.1. Derivatives of Complex-Valued Functions of §4.2. Definite Integrals of Functions w §4.3. Paths §4.4. Path Integrals §4.5. Examples §4.6. Upper Bounds for Integrals §4.7. Primitive Functions §4.8. Examples §4.9. Cauchy Integral Theorem §4.10. Proof of Cauchy Integral Theorem §4.11. Extended Cauchy Integral Theorem §4.12. Cauchy Integral Formula §4.13. Derivatives of Analytic Functions §4.14. Liouville’s Theorem §4.15. Maximum Modulus Principle
文件格式: PDF大小: 2.85MB页数: 42
§5.1. Convergence of Series §5.2. Taylor Series §5.3. Examples §5.4. Laurent Series §5.5. Examples §5.6. Absolute and Uniform Convergence of Power Series §5.7. Continuity of Sums of Power Series §5.8. Integration and Differentiation of Power Series §5.9. Uniqueness of Series Representations §5.10. Multiplication and Division of Power Series
文件格式: PDF大小: 1.12MB页数: 29
§6.1. Residues §6.2. Cauchy’s Residue Theorem §6.3. Using a Single Residue §6.4. The Three Types of Isolated Singular Points §6.5. Residues at Poles §6.6. Examples §6.7. Zeros of Analytic Functions §6.8. Uniquely Determined Analytic Functions §6.9. Zeros and Poles §6.10. Behavior of f Near Isolated Singular Points §6.11. Reflection Principle
文件格式: PDF大小: 1.11MB页数: 26
§7.1. Evaluation of Improper Integrals §7.2. Examples §7.3. Improper Integrals From Fourier Analysis §7.4. Jordan’s Lemma §7.5. Indented Paths §7.6. An Indentation Around a Branch Point §7.7. Definite Integrals Involving Sine and Cosine §7.8. Argument Principle §7.9. Rouche’s Theorem
文件格式: PDF大小: 270.42KB页数: 21
§8.1. Conformal mappings §8.2. Unilateral Functions §8.3. Local Inverses §8.4. Affine Transformations §8.5. The Transformation = /1 zw §8.6. Mappings by /1 z §8.7. Fractional Linear Transformations §8.8. Cross Ratios §8.9. Mappings of the Upper Half Plane
文件格式: PDF大小: 1.36MB页数: 23
实验一 安全教育和仪器洗涤认领 3 实验二 蒸馏及沸点测定 3 实验三 重结晶 4 实验四 蒸馏 3 实验五 1-溴丁烷的制备 (一) 4 实验六 1-溴丁烷的制备(二) 4 实验七 乙酸异五酯的制备 4 实验八 水蒸气蒸馏 4 实验九 从茶叶中提取咖啡碱 5 实验十 乙酰苯胺的制备 5 实验十一 乙酰乙酸乙酯的制备(一) 4 实验十二 乙酰乙酸乙酯的制备(二) 3 理论考试/还仪器 3
文件格式: PDF大小: 292.95KB页数: 19
©2026 mall.hezhiquan.com 和泉文库
帮助反馈侵权