Spring 2003 1661AC22 Longitudinal Dynamics For notational simplicity, let X=Fn, Y= Fu, and Z= F aF Longitudinal equations(1-15 )can be rewritten as mi=X+X2- mg cos(0+△X
文件格式: PDF大小: 453.27KB页数: 15
LECTURE+ 12 RIGID BODY OYNAAICS 工 MPLICAT IONsF GENERAL ROTATIONAL OYWMICS EJLER's EQUATIN of MOTION TORQVE FREE SPECIAL CASES. PRIMARY LESSONS: 30 ROTATONAL MOTION MUCH MORE COMPLEX THAN PLANAR (20) EULER'S E.o.M. PROVIOE STARTING POINT FoR ALL+ OYwAmIcs SOLUTINS To EvlER's EQuATIONS ARE COMPLEX BUT WE CAN OEVE LOP GooO GEOMETRIC VISUALIZATION TOOLS
文件格式: PDF大小: 2.83MB页数: 21
ATTITUDE MOTION -TORQVE FeEE MANE 0ISCUSSED THE ROTATIONAL MOTION FRDn 1 ERSPECTvE。FE”6o0 FRAME 一NE0T0F1A0 A WAy TO CONNECT THE MOTION To THE INEATIAL FRAME So WE CAN DESCRI BE THE ACTUAL MOTION TYPICALLY DoNE 6y DESC RI BING MOTION oF NEHICLE ABoVT THE
文件格式: PDF大小: 2.43MB页数: 12
美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture 11
文件格式: PDF大小: 1.58MB页数: 21
Spring 2003 Generalized forces revisited Derived Lagrange s equation from d'Alembert's equation ∑m(8x+16y+22)=∑(Fx+F+F。=) Define virtual displacements sx Substitute in and noting the independence of the 8q,, for each
文件格式: PDF大小: 182.19KB页数: 8
Spring 2003 Derivation of lagrangian equations Basic Concept: Virtual Work Consider system of N particles located at(, x2, x,,.x3N )with 3 forces per particle(f. f, f..fn). each in the positive direction
文件格式: PDF大小: 720.26KB页数: 33
Spring 2003 Example Given: Catapult rotating at a constant rate(frictionless, in the horizontal plane) Find the eom of the particle as it leaves the tube
文件格式: PDF大小: 165.55KB页数: 6
NUMERICAL SOLUTION GIEN A COMPLEX SET of OYNAMICS (t)=F(x) WHERE F() COULD BE A NONLINEAR FUNCTION IT CAN BE IMPOSS IBLE To ACTVALLY SOLVE FoR ( ExACTLY. OEVELOP A NUMERICAL SOLUTION. CANNED CoDES HELP US THIS TN MATLAB BUT LET US CONSDER THE BASiCS
文件格式: PDF大小: 1.42MB页数: 10
Introduction We started with one frame (B) rotating and accelerating with respect to another(), and obtained the following expression for the absolute acceleration
文件格式: PDF大小: 48.42KB页数: 6
Spring 2003 Lagrange's equations Joseph-Louis lagrange 1736-1813 http://www-groups.dcs.st-and.ac.uk/-history/mathematicians/lagranGe.html Born in Italy. later lived in berlin and paris Originally studied to be a lawyer Interest in math from reading halleys 1693 work on
文件格式: PDF大小: 238.3KB页数: 16
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权