ECTURE +2 RIGId BoDY DYNAnIC 工Ap1CAT105FA。R工 GENERAL ROTATIONAL JYNMICS EULER'S EQuATIoN of MOTIoN TORQVE fREE SPECIAL CAsEs PRIMARY LESSONS 3D RoTATONAL MOTION MUCH MORE COMPLEX THAN PLANAR (20) EULER'sE。.A.PR∞N10 E STARTING Pot FoR ALL A/s s/c DwAnIcs soLuTIONs To EULERs ERvATrows ARe DAPL巨,B叭 T WE CA DE VE LDP Goo0 GEOMETRIC VISVALIZATION TOOLS
1- Now CAN DEVE LOP THE FULL SET OF RoTAT IONAL 0YNAuICs: TRW/sPoRT THM =R王 X H b:pN昕TEsB0Y AN GVLAR VEbOcIT of FRA心E B。 Y URT INERTIAL ND山, E ASSUME THAT WE ARE USIN丹FME FRTE600y训M肝我 CENTERED升 THE CENTER OF MAss AND FIXED TO THE BoDy INERTIA VIAL UES FIXEO 工 K VECToRs of RECALL,工F sWxi+uyJ十 BoDy FRAME 乐小 xi+Wyj+ SUMMARY M= H °+x() GENERAL FORM OF ROTATIONAL DYNAMICS
°正 E NOW USE T80 y FRAME,cA人 认 RITE TME5 E IN MATRIX F0川: 工W6 工RW 工工y工2 工工工 工2x工x工2 VERY COMPLEx FOR F心Lre SIMPLIF1E5工F妩455 ME THAT B0y FRAME ALIGNED WITH PRINCI PAL AXEs >I8 Yy O REDUCES TO EULERS UATLONS of MOTIoN A y 工x山x+( y wW 工 +(工
3 E VLER'S ER0ATIou5 NoNLWEAR, CouPLED, FEW ANALYTIC SOLOTIONS TYPICALLY TWo PROBLEMs OF INTEREST o GIVEN M WMAT IS THE ResPowSE oF THE SYSTEM(GIVEN A MOTION, WMAT MUST M BE?) 3 IN THE ABSENCE OF M TOR&VE FREE WMAT WoU LO THE MOTION OF THE BODY BE O GEN MOTION FINO M IS RELtTIVELy5(MAPLE MUCN MARDER THE OTHER WAY( GIVEN M, FINO 4(+) REQUIRES SOLUTION OF THE COUPLED NONLINEAR EQvATION S- FEW AN ALT(C ANSWERS EASILy DoNE NUMERICHLLy 中xRME ② CAN GWE A Lo°0 METRIC TASIGHTS 工川ToWAτ TYPES DF MOT1 DNS OCGUR MoMENTUM t ENERG Eui fsiS →T0 RQvE FREE” MOTION ONLY
l0SD-4 AMPLE EER十 Jo HNST 37 SHAET WEI GMS 16-I0 ROTATES AT CoNSTANT RATE W=Q RAO/SEC FNRE升 CTIONS AT bINTS SOLUTION FI FRAME xyZ AT COMG WHICH ROTATE TH THE FRAME USE POINT G AND FRAME XY'z CAN CALCULATE THE工 JERTIAS 2Ma lo Ma 工x CAu CALCULATE THE REST BUT THIS IS ALL WE NEE0, SINCE Hg=I&WG AN EASILY SEE TH HcA0心G YPICAL OF 30 ROTATIONS ARE NOT ALIGNED BUT RARELY5EEN工N PLANAR PROBLEMS