二部图中最大匹配的存在性 Theorem 8.3 Let G be a bipartite graph with partite sets U and W such that r Us W.Then G contains a matching of cardinality r if and only if G satisfies Hall's condition. 必要性: G B D F K L M
二部图中最大匹配的存在性 必要性:
Theorem 8.3 Let G be a bipartite graph with partite sets U and W such that r =Us W.Then G contains a matching of cardinality r if and only if G satisfies Hall's condition. ·充分性 ·奠基:|U川=1,显然 你能想到用数学 归纳法证明吗? ·假设:IU≤Wand1≤IU<k,结论成立 ·归纳证明要点: Let G be a bipartite graph with partite sets U and W,where k=UsW,such that Hall's condition is satisfied.We show that U can be matched to a subset of W. ·从U任取一个u,从N(u)中任取一个w,构造H:G-{u,w:H满足Ha条件吗? ·如果对U的任意子集S,IN(S)川>IS引,是成立的。否则,很难看出 现在你能理解为什么在归纳证明中,需要分情形证明了吗?
• 充分性 • 奠基: |U|=1,显然 • 假设: 结论成立 • 归纳证明要点: • 从U任取一个u,从N(u)中任取一个w,构造H:G-{u,w}:H满足Hall条件吗? • 如果对U的任意子集S,|N(S)|>|S|,是成立的。否则,很难看出 你能想到用数学 归纳法证明吗? 现在你能理解为什么在归纳证明中,需要分情形证明了吗?
Case 2.There exists a proper subset X ofU such that N(X)=X.Let F be the bipartite subgraph of G with partite sets X and N(X).Since Hall's condition is satisfied in F,it follows by the induction hypothesis that X can be matched to a subset of N(X).Indeed,since N(X)=X],the set X can be matched to N(X).Let M'be such a matching. Next,consider the bipartite subgraph H of G with partite sets U-X and W-N(X).Let S be a subset of U-X and let S'=N(S)n(W-N(X)). We show that |Ss S'l.By assumption,N(XUS)XUS.Hence N(X)川+ISI=lN(XUS)I≥X|+S
这个定理的直观含义是什么? Theorem 8.4 A collection {S S2,...S of nonempty finite sets has a system of distinct representatives if and only if for each integer k with 1 s k s n,the union of any k of these sets contains at least k elements. For example,consider the sets S,S,...S,where S1={1,2,3}S2={2,4,6} S3={3,4,5} S4={1,4,7} S5={1,5,6} S6={3,6,7} S7={2,5,7} Then this collection of sets has a system of distinct representatives.In particular,1,2,.... 7(that is,i S;for i=1,2,...,7)is a system of distinct representatives.On the other hand,the setswhere S1={1,3,5,6}S%={3,4} S3={4,5} S4={3,4,5} Sg={1,2,4,6}S%={3,5}, do not have a system of distinct representatives as S2UUUS={3,4,5 so distinct representatives do not exist for the sets
这个定理的直观含义是什么?