晶体三极管工作在放大状态。 (3)在放大区内ic=BiB,存在电流放大作用。集电极电流ic仅受i的控制, 几乎与l无关,这时可以把三极管视为一个受基极电流iB控制的受控电流源。 9.晶体三极管的参数是选用三极管的重要依据。B和B是共发射极交流和直流 放大系数,一般B≈B。是用来表示电流放大能力大小的参数,选用三极管时, 其β值应恰当,一般β太大的管子工作稳定性较差:IcBo、lcEo的大小反映三极管的 温度稳定性的参数,温度上升时,lCBo、lcEo将增大,在实际应用时,希望lcB越小 越好,lco与lcBo有如下关系:lcEo=(1+B)lo;PcM、lcM、 U(BRICEO规定了三极管 的安全运用范围,一般情况下,l超过lcM一些晶体管不会损坏,只是B值会显著 下降,影响放大质量,但晶体管工作时,是不允许同时达到lM和U( BRICEO,否则集 电极功耗将大大超过PcM值,从而使晶体管损坏。 10.场效应管又称单极型晶体管,是一种电压控制型器件,具有高输入阻抗和低噪 声等特点。场效应管的特性曲线有转移特性曲线和输出特性曲线。跨导表示场效应 管放大能力的主要参数。按其结构的不同可分为结型场效应管和绝缘栅场效应管两 类,每类都有P沟道和N沟道的区分。绝缘栅场效应管按其工作状态又可以分为增 强型和耗尽型两种 第2章放大电路的基本知识 、教学要求 本章是模拟电子电路的基础篇,也是重点篇。模拟电子电路主要研究宄如何不失 真地放大信号,而单级放大电路是构成复杂电路(如多级放大电路、反馈放大电路 及集成运放)的基础,本章有关单级放大电路的组成、技术指标、分析方法等内容, 都将贯穿到后续章节去 本章的教学要求是 (1)理解共发射极电路的组成、工作原理;*了解共发射极电路的图解分析法。 (2)了解温度对静态工作点的影响:掌握分压式偏置电路的工作原理和静态工 作点的估算 (3)了解应用简化等效电路(b,B)计算电压放大倍数、输入电阻和输出电 阻的方法。 (4)了解共集电极电路和共基极电路的性能特点;三种组态电路的性能比较 (5)理解放大器的幅频特性、相频特性和通频带的概念。 重点:放大电路的性能指标,静态工作点的分析计算,静态工作点的稳定 难点:共射极放大电路的图解分析,分压式偏置电路静态工作点的稳定过程。 二、内容提要与分析
晶体三极管工作在放大状态。 (3)在放大区内 iC=βiB,存在电流放大作用。集电极电流 iC仅受 iB 的控制, 几乎与 uCE 无关,这时可以把三极管视为一个受基极电流 iB 控制的受控电流源。 9.晶体三极管的参数是选用三极管的重要依据。β和 是共发射极交流和直流 放大系数,一般 。β是用来表示电流放大能力大小的参数,选用三极管时, 其β值应恰当,一般β太大的管子工作稳定性较差;ICBO、ICEO 的大小反映三极管的 温度稳定性的参数,温度上升时,ICBO、ICEO 将增大,在实际应用时,希望 ICBO 越小 越好,ICEO 与 ICBO 有如下关系:ICEO=(1+β)ICBO;PCM、ICM、U(BR)CEO 规定了三极管 的安全运用范围,一般情况下,IC 超过 ICM 一些晶体管不会损坏,只是β值会显著 下降,影响放大质量,但晶体管工作时,是不允许同时达到 ICM 和 U(BR)CEO,否则集 电极功耗将大大超过 PCM 值,从而使晶体管损坏。 10.场效应管又称单极型晶体管,是一种电压控制型器件,具有高输入阻抗和低噪 声等特点。场效应管的特性曲线有转移特性曲线和输出特性曲线。跨导表示场效应 管放大能力的主要参数。按其结构的不同可分为结型场效应管和绝缘栅场效应管两 类,每类都有 P 沟道和 N 沟道的区分。绝缘栅场效应管按其工作状态又可以分为增 强型和耗尽型两种 第 2 章 放大电路的基本知识 一、教学要求 本章是模拟电子电路的基础篇,也是重点篇。模拟电子电路主要研究如何不失 真地放大信号,而单级放大电路是构成复杂电路(如多级放大电路、反馈放大电路 及集成运放)的基础,本章有关单级放大电路的组成、技术指标、分析方法等内容, 都将贯穿到后续章节去。 本章的教学要求是 (1)理解共发射极电路的组成、工作原理;*了解共发射极电路的图解分析法。 (2)了解温度对静态工作点的影响;掌握分压式偏置电路的工作原理和静态工 作点的估算。 *(3)了解应用简化等效电路(rbe,β)计算电压放大倍数、输入电阻和输出电 阻的方法。 (4)了解共集电极电路和共基极电路的性能特点;三种组态电路的性能比较。 (5)理解放大器的幅频特性、相频特性和通频带的概念。 重点:放大电路的性能指标,静态工作点的分析计算,静态工作点的稳定。 难点:共射极放大电路的图解分析,分压式偏置电路静态工作点的稳定过程。 二、内容提要与分析
本章是学习后面各章的基础,其主要内容如下 1.放大的概念 在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大的本质 是在输入信号的作用下,通过有源器件(晶体管、场效应管或运算放大器等)对直 流电源的能量进行控制和转换,使负载从电源中获得的输出信号能量,比信号源向 放大电路提供的能量大得多,因此放大的特征是功率放大,表现为输出电压大于输 入电压,或输出电流大于输入电流,或二者兼而有之。放大的前提是不失真,换言 之,如果电路输出波形产生失真便谈不上放大。 2.放大电路的性能指标 (1)放大倍数或增益。它表示放大器输出信号的变化量与输入信号的变化量之 比,常用的三种:电压放大倍数4=,电流放大倍数4=,功率放大倍数 P 用以衡量放大电路的放大能力 (2)输入电阻R:从输入端看进去的交流等效电阻,反映放大电路从信号索取 电流的大小。 (3)输出电阻Ra:从输出端看进去的等效输出信号源的内阻,说明放大电路 的带负载能力 (4)下限、上限截止频率丘和f及通频带f:均为频率参数,反映放大电路 对信号频率的适应能力 3.放大电路的组成原 (1)必须有放大电路的核心元件,即晶体管或场效应管。 (2)合适的直流电源包括与其它电路元件以保证晶体管工作在放大区、场效应 管工作在恒流区,即建立起合适的静态工作点,并保证在放大信号时不失真。 3)输入信号应能够有效地作用于有源器件的输入回路:输出信号能够由负载 获得 4.放大电路的静态分析 学习放大器静态工作点内容时,读者应了解和掌握下列基本概念 (1)放大器未加交流输入信号t1(即u=0)时的工作状态,称为静态。 (2)静态时,放大电路中电流和电压均为直流,静态工作点可由放大电路的直 流通路来分析和确定。画直流通路的原则是:放大电路中的电容视为开路,而电感 视为短路,电压信号源视为短路。静态工作点是指静态时的lB、l、UcE,用l∞g、lc
本章是学习后面各章的基础,其主要内容如下: 1.放大的概念 在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大的本质 是在输入信号的作用下,通过有源器件(晶体管、场效应管或运算放大器等)对直 流电源的能量进行控制和转换,使负载从电源中获得的输出信号能量,比信号源向 放大电路提供的能量大得多,因此放大的特征是功率放大,表现为输出电压大于输 入电压,或输出电流大于输入电流,或二者兼而有之。放大的前提是不失真,换言 之,如果电路输出波形产生失真便谈不上放大。 2.放大电路的性能指标 (1)放大倍数或增益。它表示放大器输出信号的变化量与输入信号的变化量之 比,常用的三种:电压放大倍数 i o u u u A = ,电流放大倍数 1 i i A o i = ,功率放大倍数 i o p P P A = ,用以衡量放大电路的放大能力。 (2)输入电阻 Ri:从输入端看进去的交流等效电阻,反映放大电路从信号索取 电流的大小。 (3)输出电阻 Ro:从输出端看进去的等效输出信号源的内阻,说明放大电路 的带负载能力。 (4)下限、上限截止频率 fL和 fH 及通频带 fbw:均为频率参数,反映放大电路 对信号频率的适应能力。 3.放大电路的组成原则 (1)必须有放大电路的核心元件,即晶体管或场效应管。 (2)合适的直流电源包括与其它电路元件以保证晶体管工作在放大区、场效应 管工作在恒流区,即建立起合适的静态工作点,并保证在放大信号时不失真。 (3)输入信号应能够有效地作用于有源器件的输入回路;输出信号能够由负载 获得。 4.放大电路的静态分析 学习放大器静态工作点内容时,读者应了解和掌握下列基本概念; (1)放大器未加交流输入信号 ui(即 ui=0)时的工作状态,称为静态。 (2)静态时,放大电路中电流和电压均为直流,静态工作点可由放大电路的直 流通路来分析和确定。画直流通路的原则是:放大电路中的电容视为开路,而电感 视为短路,电压信号源视为短路。静态工作点是指静态时的 IB、IC、UCE,用 IBQ、ICQ
(3)静态工作点对放大器的放大倍数、信号失真均有影响。选择合适的静态工 作点,使放大电路工作在管子特性曲线的线性部分,使它能基本不失真地放大交流 信号。若静态工作点Q选得过高,易引起饱和失真;反之,Q点选得过低,易引起 截止失真。 (4)温度变化是静态工作点不稳定的主要原因、温度变化对晶体管的参数有如 下影响 温度↑{B↑}→1c↑ 显然,温度变化最终导致集电极电流lcQ的变化,要使静态工作点稳定,必须稳 定lo。常用的稳定静态工作点的方法采用分压式偏置电路 (5)放大电路的静态工作点可采用图解法与估算法进行 5.放大电路的动态分析 在学习放大电路放大交流信号时,读者应了解和掌握下列基本概念 (1)放大电路加有交流输入信号u1(l4≠0)时的工作状态,称为动态 (2)放大电路工作在动态时,电路中的各种电流、电压信号,既有直流分量, 又有交流分量,直流分量和交流分量是叠加在一起的。为了分析方便起见,我们通 常将放大电路中直流分量与交流分量分开分析,直流分量由放大电路的直流通路决 定,交流分量则由放大电路的交流通路进行分析 (3)交流通路是指在交流输入信号的作用下,交流流通的途径,用于放大电路 的动态分析。画交流通路的原则是:容量大的电容(如耦合电容和旁路电容)视为 短路,无内阻的直流电压源视为短路。 (4)放大电路的动态分析常用的方法有图解法和微变等效电路法。图解法一般 适于分析输出幅度较大而工作频率不太高的情况,多用于分析最大不失真输出电压 和失真情况,而微变等效电路法只适用于低频小信号交流分量作用于放大电路时其 动态技术指标的计算,且前提是假定放大电路已经有合适的静态工作点 6.晶体管基本放大电路有共射、共集、共基三种接法。在三种放大电路中,共 射极放大电路既有电流放大作用又有电压放大作用,输入电阻居中,输出电阻较大, 适用于一般放大;共集电极放大电路只放大电流而不放大电压,因输入电阻高而常
UCEQ。 (3)静态工作点对放大器的放大倍数、信号失真均有影响。选择合适的静态工 作点,使放大电路工作在管子特性曲线的线性部分,使它能基本不失真地放大交流 信号。若静态工作点 Q 选得过高,易引起饱和失真;反之,Q 点选得过低,易引起 截止失真。 (4)温度变化是静态工作点不稳定的主要原因、温度变化对晶体管的参数有如 下影响 → CO CBO BE I I U 温度 显然,温度变化最终导致集电极电流 ICQ 的变化,要使静态工作点稳定,必须稳 定 ICQ。常用的稳定静态工作点的方法采用分压式偏置电路。 (5)放大电路的静态工作点可采用图解法与估算法进行。 5.放大电路的动态分析 在学习放大电路放大交流信号时,读者应了解和掌握下列基本概念: (1)放大电路加有交流输入信号 ui (ui≠0)时的工作状态,称为动态。 (2)放大电路工作在动态时,电路中的各种电流、电压信号,既有直流分量, 又有交流分量,直流分量和交流分量是叠加在一起的。为了分析方便起见,我们通 常将放大电路中直流分量与交流分量分开分析,直流分量由放大电路的直流通路决 定,交流分量则由放大电路的交流通路进行分析。 (3)交流通路是指在交流输入信号的作用下,交流流通的途径,用于放大电路 的动态分析。画交流通路的原则是:容量大的电容(如耦合电容和旁路电容)视为 短路,无内阻的直流电压源视为短路。 (4)放大电路的动态分析常用的方法有图解法和微变等效电路法。图解法一般 适于分析输出幅度较大而工作频率不太高的情况,多用于分析最大不失真输出电压 和失真情况,而微变等效电路法只适用于低频小信号交流分量作用于放大电路时其 动态技术指标的计算,且前提是假定放大电路已经有合适的静态工作点。 6.晶体管基本放大电路有共射、共集、共基三种接法。在三种放大电路中,共 射极放大电路既有电流放大作用又有电压放大作用,输入电阻居中,输出电阻较大, 适用于一般放大;共集电极放大电路只放大电流而不放大电压,因输入电阻高而常
做为多级放大电路的输入级,因输出电阻低(带负载能力强)而常作为多级放大电 路的输出级,因电压放大倍数接近于1而用于信号的跟随;共基极放大电路只放大 电压而不放大电流,输入电阻小,高频特性好,适用组成宽带放大电路 第3章直接耦合放大电路和集成运算放大器 本章的教学要求 本章是基本放大器知识的延伸。直接耦合放大电路是集成运算放大器的基础, 而运算放大器又是组成电子电路的基本单元,其应用相当广泛 (1)了解差分放大器的电路特点,工作原理,了解差模信号与共模信号、失调 与调零的概念。 (2)了解集成电路的类型、特点及发展概况 (3)了解集成运算放大器内部组成及主要参数 重点:差动放大电路的组成和工作原理,集成运放的特点。 难点:差动电路的计算及运放的工作原理 内容提要与分析 1.用来放大缓慢变化的信号或直流变化量的放大器称为直流放大器。直流放大 器既可以放大直流信号,也可以放大交流信号 2.直流放大器级间采用直接耦合方式,因此存在前后级静态工作点相互影响和 零点漂移两个主要问题。 3.解决前后级静态工作点相互影响的问题的主要措施是:提高后一级晶体管发 射极电位(对PNP管应降低)。 4.零点漂移 (1)什么是零点漂移 直流放大器输入信号为零时(输入端对地短路),输出电压偏离其起始值的现象 称为零点漂移,简称零漂。 (2)产生零点漂移的原因是什么? 造成零点漂移的原因是:晶体管参数lcEo、UBE、β随温度变化而变化,电源电 压的波动,电路元件的老化等引起晶体管工作点的变化。其中温度的变化是产生零 点漂移的主要原因。 (3)抑制零点漂移的措施 可以采用热敏电阻进行温度补偿来抑制零漂。但由于热敏电阻的温度特性不可 能与晶体管的温度特性完全一致,所以很难得到满意的效果。抑制零点漂移的有效
做为多级放大电路的输入级,因输出电阻低(带负载能力强)而常作为多级放大电 路的输出级,因电压放大倍数接近于 1 而用于信号的跟随;共基极放大电路只放大 电压而不放大电流,输入电阻小,高频特性好,适用组成宽带放大电路。 第 3 章 直接耦合放大电路和集成运算放大器 本章的教学要求 本章是基本放大器知识的延伸。直接耦合放大电路是集成运算放大器的基础, 而运算放大器又是组成电子电路的基本单元,其应用相当广泛。 (1)了解差分放大器的电路特点,工作原理,了解差模信号与共模信号、失调 与调零的概念。 (2)了解集成电路的类型、特点及发展概况。 (3)了解集成运算放大器内部组成及主要参数。 重点:差动放大电路的组成和工作原理,集成运放的特点。 难点:差动电路的计算及运放的工作原理。 内容提要与分析 1.用来放大缓慢变化的信号或直流变化量的放大器称为直流放大器。直流放大 器既可以放大直流信号,也可以放大交流信号。 2.直流放大器级间采用直接耦合方式,因此存在前后级静态工作点相互影响和 零点漂移两个主要问题。 3.解决前后级静态工作点相互影响的问题的主要措施是:提高后一级晶体管发 射极电位(对 PNP 管应降低)。 4.零点漂移 (1)什么是零点漂移 直流放大器输入信号为零时(输入端对地短路),输出电压偏离其起始值的现象 称为零点漂移,简称零漂。 (2)产生零点漂移的原因是什么? 造成零点漂移的原因是:晶体管参数 ICEO、UBE、β随温度变化而变化,电源电 压的波动,电路元件的老化等引起晶体管工作点的变化。其中温度的变化是产生零 点漂移的主要原因。 (3)抑制零点漂移的措施 可以采用热敏电阻进行温度补偿来抑制零漂。但由于热敏电阻的温度特性不可 能与晶体管的温度特性完全一致,所以很难得到满意的效果。抑制零点漂移的有效
电路是采用差动放大器。 5.差动放大电路 (1)基本概念: ①差模输入 在差动放大电路两输入端分别加入大小相等而极性相反的信号,即m1=la,这 种输入模式称为差模输入。而输入端之间的信号之差称为差模信号,用表示,即 liFuli1-4i2=2u;l, u=uid, ui ②共模输入 差动放大电路的两输入端输入大小相等、极性也相同的信号,即u1=l2,这种 输入模式称为共模输入,它们对地的信号称为共模信号,用山c表示,。=ui1=u ③差模放大倍数Ad、共模放大倍数Avc和共模抑制比KcMR 输入差模信号时的放大倍数称为差模放大倍数,记作And,定义为 式中uod是ud作用下的输出电压。 在共模信号作用下放大电路的放大倍数称为共模放大倍数,记作Am,定义为 A 式中c是共模输入信号,Loe是ue作用下的输出电压。它们可以是缓慢变化的 信号,也可以是正弦交流信号 为了综合考察差动放大电路对差模信号的放大能力和对共模信号的抑制能力 通常用共模抑制比作为差动放大电路的性能指标,记作KCM,定义为 CMR 其值愈大,说明性能愈好。 (2)差动放大电路 ①基本的差动放大电路 基本差动放大电路仅靠电路的对称性,在双端输出的差放电路两管集电极输出 端抑制零漂,但对每个管子的集电极电位的零漂并未受到抑制,如果采用单端输出, 零漂问题就无法解决。即使是双端输岀,由于实际电路不可能完全对称,当输入共 模信号时,两个输出端对地的电压就有较大差异,虽然双端输出能抵消部分共模部 分,但仍有较大共模输出
电路是采用差动放大器。 5.差动放大电路 (1)基本概念: ①差模输入 在差动放大电路两输入端分别加入大小相等而极性相反的信号,即 ui1=-ui2,这 种输入模式称为差模输入。而输入端之间的信号之差称为差模信号,用 uid 表示,即 uid=ui1-ui2=2ui1,则 ui uid ui uid 2 1 , 2 1 1 = 2 = − 。 ②共模输入 差动放大电路的两输入端输入大小相等、极性也相同的信号,即 ui1=ui2,这种 输入模式称为共模输入,它们对地的信号称为共模信号,用 uic表示,uic=ui1=ui2。 ③差模放大倍数 Aud、共模放大倍数 Auc和共模抑制比 KCMR 输入差模信号时的放大倍数称为差模放大倍数,记作 Aud,定义为 id od ud u u A = 式中 uod 是 uid 作用下的输出电压。 在共模信号作用下放大电路的放大倍数称为共模放大倍数,记作 Auc,定义为 ic oc uc u u A = 式中 uic是共模输入信号,uoc是 uic作用下的输出电压。它们可以是缓慢变化的 信号,也可以是正弦交流信号。 为了综合考察差动放大电路对差模信号的放大能力和对共模信号的抑制能力, 通常用共模抑制比作为差动放大电路的性能指标,记作 KCMR,定义为 uc ud CMR A A K = 其值愈大,说明性能愈好。 (2)差动放大电路 ①基本的差动放大电路 基本差动放大电路仅靠电路的对称性,在双端输出的差放电路两管集电极输出 端抑制零漂,但对每个管子的集电极电位的零漂并未受到抑制,如果采用单端输出, 零漂问题就无法解决。即使是双端输出,由于实际电路不可能完全对称,当输入共 模信号时,两个输出端对地的电压就有较大差异,虽然双端输出能抵消部分共模部 分,但仍有较大共模输出