T Nozawa et aL /Joumal of Nuclear Materials 384(2009)195-211 Tensile properties of as-received and irradiated SiC/SiC composites. ampaign condition E(GPa) AE(%) Ours(MPa)dus(3) Ops (MP)ensile stress Failure strain 2366(46) 97(35) 0.400.14)+150 HFIR-14J 7.7dpa800°C 12381(26) 217(36) 0.38(002)+138 Multilayer None 375(19 271(51) 232(47) 009(003) 14 HFIR-NER °421(53)+12193(61) 93(61) 004(0.02)-56 96(57) HFIR-N 136(-) 0.14( MTROOM-95U 19(51) 223(36) MTROOM-95U °C338(41)-10231(51) 166(35) No dat No data HFIR-14J °356(39)-5302(-) 11 0.2(-)+3 Note: Numbers in parenthesis indicate one standard deviation. b E200 Neutron Dose [dpa-SIC Neutron Dose [dpa-SICI 06 0 Neutron Dose (dpa-Sic] Neutron Dose [dpa-SICl s/CVI-SiC composites with esther a byc monolayer or ycl SiC multilayer interphase
Table 3 Tensile properties of as-received and irradiated SiC/SiC composites. Interphase Irradiation campaign Irradiation condition Young’s modulus Ultimate tensile strength Proportional limit tensile stress Failure strain # of valid tests E (GPa) DE (%) rUTS (MPa) DrUTS (%) rPLS (MPa) DrPLS etotal (%) Detotal (%) Monolayer None – 362 (34) – 319 (64) – 228 (44) – 0.16 (0.06) – 25 JMTR00M-95U 1.0 dpa 800 C 320 (46) 12 366 (46) +15 197 (35) 14 0.41 (0.17) +156 8 JMTR00M-95U 1.0 dpa 1000 C 289 (16) 20 418 (24) +31 183 (45) 20 No data No data 6 HFIR-FUN 1.8 dpa 380 C 354 (28) 2 366 (82) +15 190(23) 17 0.40 (0.14) +150 3 HFIR-14 J 7.7 dpa 800 C 320 (11) 12 381 (26) +19 217 (36) 5 0.38 (0.02) +138 4 Multilayer None – 375 (19) – 271 (51) – 232 (47) – 0.09 (0.03) – 14 HFIR-NERI 0.7 dpa 700 C 406 (36) +8 234 (12) 14 203 (32) 12 0.06 (0.01) 33 2 HFIR-NERI 0.7 dpa 1030 C 421 (53) +12 193 (61) 29 193 (61) 17 0.04 (0.02) 56 3 HFIR-NERI 3.7 dpa 640 C 366 (52) 2 296 (57) +9 211 (53) 9 0.13 (0.07) +44 3 HFIR-NERI 4.2 dpa 1080 C 433 (54) +15 257 () 5 136 () 41 0.14 () +56 3 JMTR00M-95U 1.0 dpa 800 C 355 (65) 5 319 (51) +18 223 (36) 4 0.15 (0.07) +67 4 JMTR00M-95U 1.0 dpa 1000 C 338 (41) 10 231 (51) 15 166 (35) 28 No data No data 3 HFIR-14J 7.7 dpa 800 C 356 (39) 5 302 () +11 186 (42) 20 0.12 () +33 4 Note: Numbers in parenthesis indicate one standard deviation. Fig. 4. Effects of neutron dose on (a) Young’s modulus, (b) proportional limit stress, (c) ultimate tensile strength and (d) total elongation for unidirectional Hi-NicalonTM TypeS/CVI-SiC composites with either a PyC monolayer or a PyC/SiC multilayer interphase. 200 T. Nozawa et al. / Journal of Nuclear Materials 384 (2009) 195–211
T Nozawa et aL/Journal of Nuclear Materials 384(2009)195-211 400+ Non-irradiated 0200400600800 Irradiation Temperature[] Irradiation Temperature r'c d Non-irradiated Non-irradiated 0 200400 0001200 Irradiation Temperature rcl Irradiation Temperature r'C) Fig. 5. Effects( n temperature on(a) Youngs modulus, (b) proportional limit stress. (c)ultimate tensile strength and (d) total elongation fo licalonType-S/CVI-SiC composites with either a Py c monolayer or a Py c/ sic multilayer interphase. The data subsets of neutron dose range in 0.7-4.. or unidirectional Hi 00 f Pyc monolayer(720nm-thick) PyC/SiC multilayer and sliding Debond initiation ample thickness: 200um Displacement [nm ig. 6. Typical push-out fracture behaviors of Hi-Nicalon Type-s/CVI-SiC composites with either a Pyc monolayer or a Pyc sic multilayer interphase
Fig. 5. Effects of irradiation temperature on (a) Young’s modulus, (b) proportional limit stress, (c) ultimate tensile strength and (d) total elongation for unidirectional HiNicalonTM Type-S/CVI-SiC composites with either a PyC monolayer or a PyC/SiC multilayer interphase. The data subsets of neutron dose range in 0.7–4.2 dpa were plotted. Fig. 6. Typical push-out fracture behaviors of Hi-Nicalon Type-S/CVI-SiC composites with either a PyC monolayer or a PyC/SiC multilayer interphase. T. Nozawa et al. / Journal of Nuclear Materials 384 (2009) 195–211 201