5.1.6换元法分部积分法5.1.75.1.8例4设f(α)是[a,b]上的可积的凸函数,求证a+b(b - a)ff(a)da2证明因为f(α是凸函数,所以对&E[a,b]有a+bf(α)+f(a+b-α)≥2f2两边积分可得-ba+bf(a +b -) da ≥2(b- a)ff(α)da+2作换元t=a+b一a,可得f(a+b-α)dc=f(t)dt.f(t)dt =h由此即得所证返回全屏关闭退出6/24
5.1.6 5.1.7 5.1.8 { ©ÜÈ©{ ~ 4 f(x) ´ [a, b] þÈà¼ê, ¦y (b − a)f a + b 2 6 Z b a f(x) dx. y² Ï f(x) ´à¼ê, ¤±é x ∈ [a, b] k f(x) + f(a + b − x) > 2f a + b 2 . ü>È© Z b a f(x) dx + Z b a f(a + b − x) dx > 2(b − a)f a + b 2 . t = a + b − x, Z b a f(a + b − x) dx = − Z a b f(t) dt = Z b a f(t) dt. dd=¤y. 6/24 kJ Ik J I £ ¶ '4 òÑ