Isothermal equation of chemical reaction Reaction D++…→gG+hH+ △Gm=△G()+ RTIn GG/p)(1D5 (f/p3)(f/p53)° △Gm(T)+ RTIn g Where Q is the reaction quotient 4上一内容下一内容◇回主目录 返回
上一内容 下一内容 回主目录 返回 g h G H r m d e D r E m ( / ) ( / ) ( ) ln ( / ) ( / ) f p f p G T RT f p f p G = + $ $ $ $ $ r m = + G T RT Q ( ) ln f $ d e g h D E G H + + → + + Reaction: Isothermal equation of chemical reaction Where Q is the reaction quotient
The thermodynamic equilibrium constant When the reaction is at equilibrium △G=0 A, G(T)=-RTIn G/p)(H/ps)h (f/p53)(/p3)° rTIn k Ks is the thermodynamic equilibrium constant It should be noticed that eq provides a way of measuring the standard gibbs functions of reactions 4上一内容下一内容令回主目录 返回
上一内容 下一内容 回主目录 返回 When the reaction is at equilibrium, r G m = 0 g h G H r m d e D E ( / ) ( / ) ln ( / ) ) ) ( / ( f p f p RT f p f T p G = − $ $ $ $ $ = −RT K ln f $ is the thermodynamic equilibrium constant. K f $ The thermodynamic equilibrium constant It should be noticed that eq.provides a way of measuring the standard Gibbs functions of reactions
Predict the direction of reaction Use the vant Hoff equation: △Gn=- RTIn K+RTnQ For pg reaction A Gm=-RTInKp+rTIng Kp>Op A, Gm <0 from left to right s∠p A Gm>0 from right to left $ gm=0 at equilibrium 4上一内容下一内容令回主目录 返回
上一内容 下一内容 回主目录 返回 Predict the direction of reaction Use the van’t Hoff equation: r m = − + G RT K RT Q ln ln f f $ r m = − + G RT K RT Q ln ln p p $ For pg reaction: K Q G p p r m 0 $ from left to right K Q G p p r m 0 $ from right to left K Q G p p = = r m 0 $ at equilibrium
Relation of constant and equation △G(7)=- RTIn K Subscript m denoting the extent of reaction is unity 1.e. I mol △Gm(T is referred to K Example (1)H2(g)+I2(g)=H(g)△G2=2△G1 (2)H2(g)+I2(g)=2HI(g)K2=(K1)2 4上一内容下一内容◇回主目录 返回
上一内容 下一内容 回主目录 返回 Subscript m denoting the extent of reaction is unity i.e. 1 mol . r m G T( ) $ K f $ Relation of constant and equation r m = − G T RT K ( ) ln f $ $ = r m,2 r m,1 G G 2 $ $2 ,2 ,1 ( ) K K f f = $ $ Example: H (g) I (g) 2HI(g) 2 + 2 = H (g) I (g) HI(g) 2 2 1 2 2 1 (1) + = (2) is referred to