Formulation of Thermoelasticity - 2D. Plane strain thermoelastic Hooke's lawVOuo+aTS2G2G(1+v)0=8, =→> 0; =v(, +o,)-2G(1+v)αT =→ Ou =(1+v)(α, +α,-2GαlG[(1-v)o, -vo, ]+(1+v)αT,S[(1-v)g, -vo, ]+(1+v)αT, &g, =02GV-3αT), +2G(sg-αT2,1-2v1+v1-vVQ, =2GT-211-2v1+v-VV0, =2Y1-2v1-2v-216
Formulation of Thermoelasticity – 2D 1 2 2 1 0 2 1 1 2 1 1 1 , 2 1 1 1 1 , 2 2 2 3 2 1 2 1 1 2 1 2 1 2 1 2 ij ij kk ij ij z z x y kk x y x x y y y x xy xy ij kk ij ij ij x x y T G G G T G T T G T G G G T G T G T , 1 1 2 , 2 1 2 1 2 1 2 y y x xy xy G T G • Plane strain thermoelastic Hooke’s law 6
Formulation of Thermoelasticity - 2D. Plane stress thermoelastic Hooke's law2Gv -3αT), +2G(eg-αT8,)1-21一I+V+α=&0=0, = 8,2G& +V,-(1+v)αT ],a2G, +VE,-(1+v)aT , T, =2Ge,91L2G%-2G(1+) ug +αTg11V+oT?O2G1+11+V11V1+o0x2G2G1+v1+V
Formulation of Thermoelasticity – 2D • Plane stress thermoelastic Hooke’s law 2 3 2 1 2 1 1 2 1 0 1 1 1 1 2 1 , 1 2 1 , 2 1 1 2 2 1 1 1 2 1 1 ij kk ij ij ij z z x y kk x y x x y y y x xy xy ij ij kk ij ij x x y G T G T T T G T G T G T G G G , 1 1 1 , 2 1 1 2 y y x xy xy T T G G 7
Formulation of Thermoelasticity - 2D. Combined plane thermoelastic Hooke's law: Define two material constants that are related to y3-KFor plane strain: K=3-4v or n=v43-V3-Kn=0.For plane stress: KO1+V1+k3-K+(1+n)αTaB,=2GOofoBF2(1-K)41-K(1+x)13-K+(1+n)αT)OxOx42G1+K1 (1+x)3-K+(1+n)αT,cmoyO2G42G1+K-x)& +(3-x)s, -4(1+n)αT1+x)e, +(3-k)&, -4(1+n)αT ,tx,=2Ge,8
1 3 3 2 1 1 , 2 2 4 2 1 1 1 3 1 1 , 2 4 1 1 3 1 1 1 , . 2 4 1 2 1 3 4 1 , 1 1 1 x x y y y x xy xy x x y y y T G T G T G T G G G T G 3 4 1 , 2 . x xy xy T G Formulation of Thermoelasticity – 2D • Combined plane thermoelastic Hooke’s law 3 For plane strain: 3 4 or , ; 4 3 3 For plane stress: or , 0. 1 1 • Define two material constants that are related to ν 8
Stress Formulation - 2D: Beltrami-Michell Equation:ePo.&ara?axay(1+x)3-K1(1+x)3-KExgyOx2GO2G42G41+K1+Ka3-x(1+x1+x3-, +2G(1+n)αlα, +2G(1+n)αTxgy44aax44axayoP.dodaPav(a, +α,)+2G(1+n)aV-T:Addto both sides:axaaaxayay(aFaF)Using Eqiliumonthe RHS: (g,+,)+2G(1+n)VT=atay44OFF8G(1+n)aV-TV(o, +o,)+11+Kaxay1+K3-K3-K3-vn=0For plane strain: x=3-4v orFor plane stress: Kn=viOr41+x1+vaF.F.aF1aF(o, +o,)+EoV-T=-(E-oVTyV (a, +o,)+1-vaxayaxay
• Beltrami-Michell Equation: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 1 3 1 1 1 1 , 1 , . 2 4 1 2 4 1 2 1 3 1 3 2 1 2 1 2 4 4 4 4 Add x y xy x x y y y x xy xy xy x y y x x y y x x y T T G G G G T G T y x x y x 2 2 2 2 2 2 2 2 2 2 2 2 1 to both sides: 2 1 2 4 1 Using Equilibrium on the RHS: 2 1 4 1 1 4 1 8 x y xy x y x y x y x y x y G T y x y x y F F G T x y F y G T F x 2 2 2 2 3 3 3 For plane strain: 3 4 or , For plane stress: or , 0 4 1 1 1 1 1 1 x y x y x y x y E T E T F F F F x y x y Stress Formulation – 2D
Stress Function Formulation without Body ForcesAir Stress Function SolutionyyQy0y=aT,=-axoya where y= y(x,y) is an arbitrary form called Airy's stressfunction. This stress form automatically satisfies theequilibrium equation: Beltrami-Michell Equation:8G(1+n)OVT=0Vy+1+K3-VFor plane strain K=3-4v, n=vFor plane stress: K1+vHoVT=0Vy+Eo-T=010
Stress Function Formulation without Body Forces • Air Stress Function Solution 2 2 2 2 2 , , x y xy y x x y • where = (x,y) is an arbitrary form called Airy’s stress function. This stress form automatically satisfies the equilibrium equation. • Beltrami-Michell Equation: 2 4 4 2 2 4 8 1 0 1 For plane strain: 3 4 , 3 For plane stress: , 0 1 1 0 0 E T T T G E 10