3.1电子衍射与X射线衍射的比较 电子衍射花样的分析包括两个方面: (1)衍射几何:电子束经晶体散射后所产生的干涉线或斑点 的位置; (2)衍射强度:即电子束经晶体散射后所产生的干涉线或斑 点的强度。 单从衍射几何方面的分析就可获得大量的晶体学信息,本章 重点讨论这一内容,对衍射强度分析只加粗略讨论
3.1 电子衍射与X射线衍射的比较 电子衍射花样的分析包括两个方面: (1)衍射几何:电子束经晶体散射后所产生的干涉线或斑点 的位置; (2)衍射强度:即电子束经晶体散射后所产生的干涉线或斑 点的强度。 单从衍射几何方面的分析就可获得大量的晶体学信息,本章 重点讨论这一内容,对衍射强度分析只加粗略讨论
3.1电子衍射与X射线衍射的比较 表3.1电子衍射与X射线衍射的比较 相似性 差异性 1.波的叠加性导致: 1.单原子散射的特性: 布拉格公式 (E):受原子核散射 结构因子 (X):受核外电子散射 消光规律 2.衍射波长及衍射角: 2.衍射花样类型: (E):1=10-3nm,衍射角20从0~3° (X):1=101nm, 单晶花样 衍射角20从0~180° 3.衍射斑点强度 多晶花样 IE/1x≈106~107 3.单晶花样能确定晶体位 4.辐射深度:(E): 低于lμm数量级 向 (X):低于100um数量级 5.作用样品体积:():V≈1um3=10-9mm3 (X):V≈0.1~5mm3 6.晶体位向测定精度: (E):用斑点花样测定,约±3° (X):优于1° 注: (E)表示电子衍射,(X)表示X射线衍射
1.单原子散射的特性: (E):受原子核散射 (X):受核外电子散射 2.衍射波长及衍射角: (E):λ=10-3 nm,衍射角2θ从0~3° (X):λ=10-1 nm,衍射角2θ从0~180° 3.衍射斑点强度 4.辐射深度:(E): 低于1μm数量级 (X):低于100μm数量级 5.作用样品体积:(E): (X): 6.晶体位向测定精度: (E):用斑点花样测定,约±3° (X):优于1° 3.1 电子衍射与X射线衍射的比较 表3.1 电子衍射与X射线衍射的比较 6 7 I E / I X 10 ~10 3 9 3 1μm 10 mm V 3 V 0.1~ 5mm 相 似 性 差 异 性 1.波的叠加性导致: 布拉格公式 结构因子 消光规律 2.衍射花样类型: 单晶花样 多晶花样 3.单晶花样能确定晶体位 向 注:(E)表示电子衍射,(X)表示X射线衍射
3.2衍射产生的条件 3.2.1几何条件 fronts of equal phase 八、 0 C D 6 (hkly 00 B A d sine d sine The construction for deriving Bragg equation
3.2 衍射产生的条件 3.2.1 几何条件 The construction for deriving Bragg equation
3.2衍射产生的条件 3.2.1几何条件 2 dh sin0=n元 where 0 is incident angle or diffraction angle,here is defined as an angle between (hk plane and incident wave;n is diffraction order number and ..integers.If n=0,the diffraction is called zero order diffraction, indicating that incident wave is not reflected by the set of (hk planes,and forms transmitted wave.If n=1,the diffraction is called the first order diffraction,indicating that incident wave is reflected by (hkl plane,and forms first order diffracting wave.So does for n=+2,+3
3.2 衍射产生的条件 3.2.1 几何条件 where θ is incident angle or diffraction angle, here is defined as an angle between (hkl) plane and incident wave; n is diffraction order number and … integers. If n=0, the diffraction is called zero order diffraction, indicating that incident wave is not reflected by the set of (hkl) planes, and forms transmitted wave. If n=1, the diffraction is called the first order diffraction, indicating that incident wave is reflected by (hkl) plane, and forms first order diffracting wave. So does for … 2dhklsin n n 2,3
3.2衍射产生的条件 3.2.1几何条件 2 sin0=元 n 2 dSin0=元 wheredn=d.The above equations express such a physical sense:the n order diffraction of any (hk/) lattice planes is equivalent to the first order diffraction of (nhnkn/)planes.For example,the second order diffraction of(100)planes is equivalent to the first order diffraction of(200)planes
3.2 衍射产生的条件 3.2.1 几何条件 where . The above equations express such a physical sense: the n order diffraction of any (hkl) lattice planes is equivalent to the first order diffraction of (nhnknl) planes. For example, the second order diffraction of (100) planes is equivalent to the first order diffraction of (200) planes. 2 sin n dhkl 2dnhnknlsin dhkl n dnhnknl /