2, derivative coupling M Ougocy, Fpo, Gpa s-) 1, obeys the shift symmetry 9>0+const which guarantees the flatness of the potential 2, propagates spin-dependent force, short range much weaker constraint from astrophysics M≥10 GeV PDG(2002) Violates Lorentz and cPt symmetry because <O0>=≠0 (CPT) oo (cPt)=(CPt)O(CPt)=-oo cosmological CPT violation
2, derivative coupling: cosmological CPT violation! 1, obeys the shift symmetry which guarantees the flatness of the potential. 2, propagates spin-dependent force, short range, much weaker constraint from astrophysics PDG(2002) Violates Lorentz and CPT symmetry because → + const. 0 = 0 ( , , ,...) O F G M c 1 0 1 0 0 (CPT) O (CPT) = (CPT) O (CPT) = − O − − M GeV 10 10
Cosmological CPT violation and baryogenesis nBmb-1=hb~10-10 The universe is not symmetric between matter and antimatter We need baryogenesis Sakharov conditions for baryogenesis Baryon number non-conserving interaction · C and cp violations Departure from thermal equilibrium Precondition CPt is conserved! With CPT violation, baryon number asymmetry can be generated if B-violating interactions are in thermal equilibrium Dolgov Zeldovich, Rev. Mod. Phys(1981) Cohen Kaplan, PLB(1987)
10 ~10− = − n n n n n n nB b b b n ~ s Cosmological CPT violation and baryogenesis The universe is not symmetric between matter and antimatter We need baryogenesis • Baryon number non-conserving interaction • C and CP violations • Departure from thermal equilibrium Sakharov conditions for baryogenesis: Precondition: CPT is conserved! Cohen & Kaplan, PLB(1987)
Li, Wang, Feng Zhang, PRD (2002 ); Li& Zhang, PLB(2003) Interacting dark energy and baryogenesis C n It gives effective chemical potentials for baryons and antibaryons O b M b Generate a net baryon number in thermal equilibrium 7=0-0=922+(学月= gbub 2 gbOT2 6M A unified picture of matter-antimatter asymmetry and dark energy!
Interacting dark energy and baryogenesis A unified picture of matter-antimatter asymmetry and dark energy!
Quintessence model with tracking solution V(p)=f(中)e平、2 O Albrecht skordis, PRL(2000) 3(1+u) po+p 4丌 1/2 g 3√102-4) Copeland, Liddle Wands PRD(1998)
Albrecht & Skordis, PRL(2000) ( ) ( )exp( ) M pl V = f − Quintessence model with tracking solution Copeland, Liddle & Wands, PRD(1998)
The baryon to entropy ratio 159 s 4T2 g.SMT with the entropy density 2 45 9米s 8≈8≈100,gb=2 <102.2≥100 Bean, Hansen Melchiorri, PRD(2001): Doran robbers, JCAP (2006) B b~10 J=10-0 Tn~10-8M
g gs 100, gb = 2 10 , 100 2 2 − Bean, Hansen & Melchiorri, PRD(2001); Doran & Robbers, JCAP(2006)