Appendix Il.Table of Physical Constants 419 Electronic Properties of Some Metals Number of free Fermi electrons,Neff Work function Resistivity energy electrons (photoelectric) p[μncm] Material EF [eV] m3 [ev] at20°C Ag 5.5 6.1×1028 4.7 1.59 11.8 16.7×1028 4.1 2.65 Au 5.5 5.65×1028 4.8 2.35 Be 12.0 3.9 4.0 Ca 3.0 2.7 3.91 Cs 1.6 1.9 20.0 Cu 7.0 6.3×1028 4.5 1.67 Fe 4.7 9.71 K 1.9 2.2 6.15 Li 4.7 2.3 8.55 Na 3.2 2.3 4.20 Ni 5.0 6.84 Zn 11.0 3×1028 4.3 5.91 Electronic Properties of Some Semiconductors Gap Mobility Mobility energy of of Work Eg [eV] Conductivity electrons holes function 1 m27 m2 (photoelectric) Material 0K300K 2·m Vs h V·s 中[ev] C(diamond) 5.48 5.47 10-12 0.18 0.12 4.8 Ge 0.74 0.66 2.2 0.39 0.19 4.6 Element Si 1.17 1.12 9×10-4 0.15 0.045 3.6 Sn(gray) 0.08 106 0.14 0.12 4.4 GaAs 1.52 1.42 10-6 0.85 0.04 InAs 0.42 0.36 104 3.30 0.046 III-V InSb 0.23 0.17 8.00 0.125 GaP 2.34 2.26 0.01 0.007 IV-IV a-SiC 3.03 2.99 0.04 0.005 ZnO 3.42 3.35 0.02 0.018 Ⅱ-VI CdSe 1.85 1.70 0.08
Appendix II • Table of Physical Constants 419 Electronic Properties of Some Metals Fermi Number of free energy electrons, Neff (photoelectric) [# cm] Material EF [eV] elec m tr 3 ons [eV] at 20° C Ag 5.5 6.1 1028 4.7 1.59 Al 11.8 16.7 1028 4.1 2.65 Au 5.5 5.65 1028 4.8 2.35 Be 12.0 3.9 4.00 Ca 3.0 2.7 3.91 Cs 1.6 1.9 20.0 Cu 7.0 6.3 1028 4.5 1.67 Fe 4.7 9.71 K 1.9 2.2 6.15 Li 4.7 2.3 8.55 Na 3.2 2.3 4.20 Ni 5.0 6.84 Zn 11.0 3 1028 4.3 5.91 Electronic Properties of Some Semiconductors Mobility Mobility of of Work Conductivity electrons holes function (photoelectric) Material 0 K 300 K # 1 m e V m 2 s h V m 2 s [eV] C (diamond) 5.48 5.47 1012 0.18 0.12 4.8 Ge 0.74 0.66 2.2 0.39 0.19 4.6 Element Si 1.17 1.12 9 104 0.15 0.045 3.6 Sn (gray) 0.08 106 0.14 0.12 4.4 GaAs 1.52 1.42 106 0.85 0.04 InAs 0.42 0.36 104 3.30 0.046 III–V InSb 0.23 0.17 8.00 0.125 GaP 2.34 2.26 0.01 0.007 IV–IV -SiC 3.03 2.99 0.04 0.005 ZnO 3.42 3.35 0.02 0.018 II–VI CdSe 1.85 1.70 0.08 Gap energy Eg [eV] Work function Resistivity
420 Appendix ll.Tables of Physical Constants Magnetic Units Name Symbol em-cgs units mks(SI))units Conversions Magnetic H 0e=- gln A field m12.s m 1合0e strength Magnetic B G= gin cm12.s b-kgT 1T=104G induction m s·C Magnetization M Maxwell gin A 1A=4π Maxwells cm2 cm2·s m m103 cm2 Magnetic Maxwell= cm32·g2 中 Wb=kg:m2 =V·s1Wb=108 Maxwells flux s·C Susceptibility X Unitless Unitless Xmks =4TXegs (Relative) L Unitless Unitless Same value permeability Energy product BH kJ MGOe m3 1 102 MGOe Conversions from the SI Unit System into the Gaussian Unit System mks cgs Quantity (SI) (Gaussian) Magnetic induction B B/c Magnetic flux P Pg/c Magnetic field strength H cH/4π Magnetization M cM Magnetic dipole moment m Clm Permittivity constant E0 1/4π Permeability constant 0 4m/c2 Electric displacement D D/4T Note:The equations given in this book can be converted from the SI (mks)system into the cgs (Gaussian)unit system and vice versa by re- placing the symbols in the respective equations with the symbols listed in the following table.Symbols which are not listed here remain un- changed.It is imperative that consistent sets of units are utilized. o=4m×10-7=1.257×10-6(W·s/A·m)≡(Kg·m/C2≡(Hm). 60=8.854×10-12(A·s/W·m)=(Fm
Magnetic Units Name Symbol em-cgs units mks (SI) units Conversions Magnetic H Oe m A 1 m A 1 4 0 3 Oe strength Magnetic B G W m b 2 s k g C T 1 T 104 G Magnetization M cm g 1 1 / / 2 2 s m A 1 m A Ma c x m w 2 ells Magnetic Maxwell Wb V s 1 Wb 108 Maxwells Susceptibility $ Unitless Unitless $mks 4$cgs (Relative) Unitless Unitless Same value permeability Energy product BH MGOe m kJ 3 1 m kJ 3 MGOe Conversions from the SI Unit System into the Gaussian Unit System mks cgs Quantity (SI) (Gaussian) Magnetic induction B B/c Magnetic flux +B +B/c Magnetic field strength H cH/4 Magnetization M cM Magnetic dipole moment m cm Permittivity constant 0 1/4 Permeability constant 0 4/c2 Electric displacement D D/4 Note: The equations given in this book can be converted from the SI (mks) system into the cgs (Gaussian) unit system and vice versa by replacing the symbols in the respective equations with the symbols listed in the following table. Symbols which are not listed here remain unchanged. It is imperative that consistent sets of units are utilized. 0 4 107 1.257 106 (V s/A m) (Kg m/C2) (H/m). 0 8.854 1012 (A s/V m) (F/m). 4 102 kg m2 s C cm3/2 g1/2 s 4 103 Maxwell cm2 g 1/2 cm1/2 s g 1/2 cm1/2 s 420 Appendix II • Tables of Physical Constants field induction flux
9 牙 母 器 s'g Appendix Ill Unq 33 104 PAPERTECH 105 Pa Uns MASc.C.Bello. Une 窖 君达 .n HO 子8 T 33# I The Periodic Table of the Elements 2. i 员的 6式 可:动 2 用用 司3 B尘 n O.9 No 假型线 102 T: o前 子苗 N
Appendix III The Periodic Table of the Elements
Appendix IV Solutions to Selected Problems Chapter 2 2.1.0.77(m) 2.2.75% 2.3.0.114(cm)(Not0.1195cm) 2.4.1.26×104(N) 2.5.36% 2.6.703.1(MPa) 2.7.0.233 2.8.△V=0 2.10.6=10.26% e=10.8% =105.8(MPa) c=95.49(MPa) 2.11.3.998(cm) 2.12.1=1.502(m) g=254.6MPa(<300MPa) 2.13.0.292 2.14.0.5(Disregard squares of small quantities). Chapter 3 3.1.(220) 3.2.Counterclockwise sequence starting with the front plane: (1010):(0110);(1100);(1010):(0110):(1100) 3.3.(a)a=60(equilateral triangles!);B=120 (b)a=109.47° 3.4.2(not6) 3.5.1/3,2/3,1/2 3.6.Hint:Draw two triangles,one vertically between the A and B planes and the other within the B plane. 3.7.[100K100)
Appendix IV 2.1. 0.77 (m) 2.2. 75% 2.3. 0.114 (cm) (Not 0.1195 cm!) 2.4. 1.26 104 (N) 2.5. 36% 2.6. 703.1 (MPa) 2.7. 0.233 2.8. V 0 2.10. t 10.26% 10.8% t 105.8 (MPa) 95.49 (MPa) 2.11. 3.998 (cm) 2.12. l 1.502 (m) 254.6 MPa (300 MPa) 2.13. 0.292 2.14. 0.5 (Disregard squares of small quantities). 3.1. (220) 3.2. Counterclockwise sequence starting with the front plane: (1010); (0110); (1100); (1010); (0110); (1100) 3.3. (a) 60° (equilateral triangles!); 120° (b) 109.47° 3.4. 2 (not 6!) 3.5. 1/3, 2/3, 1/2 3.6. Hint: Draw two triangles, one vertically between the A and B planes and the other within the B plane. 3.7. {100} 100 Chapter 2 Solutions to Selected Problems Chapter 3
Appendix IV.Solutions to Selected Problems 423 3.8.[111]direction(close packed)lies in (110)plane(not close packed) 3.9.CsCl (a)=8;(b)one Cs and one Cl ion(c)ao=2(r+R)/V3 NaCl (a)=6;(b)4 Cl ions and 4 Na ions (c)ao=2(r+R) 3.10.(a)Each Zn ion has four nearest S ions. (b)Four Zn ions and four S ions,that is,eight ions. (c)ao=4(r+R)/V3 3.11.0.34 3.12.(a)0.707;(b)0.866 3.13.(a)0.340;(b)0.907 3.14.8.933(g/cm3) 3.15.[1100] V2 3.16.a 2 Chapter 5 5.1.Liquid:54.5% Solid:45.5% 5.2.Peritectic at 799C: a+L→B Peritectic at756°C: B+L→Y Peritectoid at640°C: y+e→g Eutectic-type (not named)at 640C: y→e+L Peritectoid at 590C: y+→8 Eutectoid at 586C: B→a+y Eutectoid at 582C: g→8+e Eutectoid at520°C: y→a+8 Peritectic at415°C: e+L→7 Eutectoid at350°C: 8→a+e Eutectic at227°C: L→m+B-Sn Peritectoid at189°C: e+→7 Eutectoid at 186C: 7→n'+B-Sn Nonstoichiometric phase e forms at 676C Allotropic transformation from B-Sn-a-Sn at 13.2C Note:Some transformations are hardly discernible in Fig- ure5.17. 5.3.(a)8.8 mass Cu in Ag at 780C (b)8.0 mass Ag in Cu at 780C 5.4.negligible 5.5.a+0 Ca=1.5 mass Cu Co=52 mass Cu 5.6.About850°C 5.7.No 5.8.(a)780°C (b)Ag-28.1 mass Cu (c)About830°C (d)About 6 mass Cu
3.8. [111] direction (close packed) lies in (110) plane (not close packed) 3.9. CsCl (a) 8; (b) one Cs and one Cl ion (c) a0 2(r R)/3 NaCl (a) 6; (b) 4 Cl ions and 4 Na ions (c) a0 2(r R) 3.10. (a) Each Zn ion has four nearest S ions. (b) Four Zn ions and four S ions, that is, eight ions. (c) a0 4(r R)/3 3.11. 0.34 3.12. (a) 0.707; (b) 0.866 3.13. (a) 0.340; (b) 0.907 3.14. 8.933 (g/cm3) 3.15. [1100] 3.16. a 2 2 5.1. Liquid: 54.5% Solid: 45.5% 5.2. Peritectic at 799°C: L Peritectic at 756°C: L Peritectoid at 640°C: Eutectic-type (not named) at 640°C: L Peritectoid at 590°C: Eutectoid at 586°C: Eutectoid at 582°C: Eutectoid at 520°C: Peritectic at 415°C: L Eutectoid at 350°C: Eutectic at 227°C: L -Sn Peritectoid at 189°C: Eutectoid at 186°C: -Sn Nonstoichiometric phase forms at 676°C Allotropic transformation from -Sn -Sn at 13.2°C Note: Some transformations are hardly discernible in Figure 5.17. 5.3. (a) 8.8 mass % Cu in Ag at 780°C (b) 8.0 mass % Ag in Cu at 780°C 5.4. negligible 5.5. C 1.5 mass % Cu C 52 mass % Cu 5.6. About 850°C 5.7. No 5.8. (a) 780°C (b) Ag–28.1 mass % Cu (c) About 830°C (d) About 6 mass % Cu Chapter 5 Appendix IV • Solutions to Selected Problems 423