APPENDIX A 785 NaOH CH3CH, CHCH(CH3)2 CHOH CH3,CH=C(CH3)2 CH3 CH, CH-C(CH3)2 ( CH3)3 CH (CH3)3CCHECI (CH3)CCH, CH, Br A-4. Initiation: ROOR or heat →2RO RO.+ HBr ROH BI Propagation: Br. CH_ CH,CH=CH2 CH, CH, CHCH, Br CHa CH CHCH, Br HBr CH CH, CH CH, Br Br. CL HCH Cl H3C (El-2-Butene A-6. CH, CH CHCH CH CH ACH CH3 A-7. Step 1: Protonation to form a carbocation Step 2: Nucleophilic addition of chloride ion N个+ CH A-8. H,C=CCH, CH; or (CH),C=CHCH3- CH CCHCH 2-Methyl-l-butene nethy butane Back Forward Main Menu TOC Study Guide Toc Student OLC MHHE Website
APPENDIX A 785 (b) (c) A-4. Initiation: Propagation: A-5. A-6. A-7. Step 1: Protonation to form a carbocation Step 2: Nucleophilic addition of chloride ion A-8. A-9. OH CH3CCH2CH3 Cl CH3 2-Chloro-2- methylbutane (CH3)2C CHCH3 2-Methyl-2-butene H2C CCH2CH3 CH3 2-Methyl-1-butene or HCl Cl Cl Cl H Cl C C H CH3CH2 H CH2CH3 C C H H CH3CH2 CH2CH3 O CH3COOH O C C H3C H H CH3 (E)-2-Butene Cl2 C C H3C CH3 H H Cl Cl C C H3C H H CH3 Cl Cl C C H3C H Cl H H3C Cl CH HBr 3CH2CHCH2Br CH 3CH2CH2CH2Br Br Br CH3CH2CH CH2 CH3CH2CHCH2Br light or heat ROOR 2RO RO HBr ROH Br CH3ONa CH3OH (CH3)3CCH CH2 HBr Peroxides (CH3) (CH 3CCH2CH2Br 3)3CCHCH3 Br NaOCH3 CH3OH CH3CH2CH C(CH3)2 CH3COOH O CH3CH2CH C(CH3)2 O CH3CH2CHCH(CH3)2 Cl Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
786 APPENDIX A HBr NaOCH, CH A-11.(CH),CHC=CH, (CH3), CHCCH CHCHAO (CH3)2C=C(CH3)2 C 2.HO Zn(CH3)2C=0(2 mol) B-1.(c)B-2.(a)B-3.(c)B-4.(d) B-5.(d B-6.(e)B-7.(b)B-8.(b) B-9.(b)B-10.(b)B-11.(a)B-12.(e) B-13.(e) CHAPTER Z A-1.(a) 1 and 2, both achiral; identical (b) 3 and 4, both chiral; enantiomers (c) 5 chiral, 6 achiral(meso); diastereomers (d) 7 and 8, both chiral; diastereomers (e)9 and 10, both chiral; diastereomers A-2. 3: (R)-2-Chlorobutane 4:(S)-2-Chlorobutane 5: 6: 7: (2S,3R)-2, 3-Dibromopentane 8:(2R, 3R)-2,3-Dibromopentane 9:(2E, 5R)-5-Chloro-2-hexene 10: (2Z,5S)-5-Chloro-2-hexene A-3. (a) Three; meso form is possible (c) Four; no meso form possible. Back Forward Main Menu TOC Study Guide Toc Student OLC MHHE Website
A-10. A-11. B-1. (c) B-2. (a) B-3. (c) B-4. (d) B-5. (d) B-6. (e) B-7. (b) B-8. (b) B-9. (b) B-10. (b) B-11. (a) B-12. (e) B-13. (e) CHAPTER 7 A-1. (a) 1 and 2, both achiral; identical (b) 3 and 4, both chiral; enantiomers (c) 5 chiral, 6 achiral (meso); diastereomers (d) 7 and 8, both chiral; diastereomers (e) 9 and 10, both chiral; diastereomers A-2. 3: (R)-2-Chlorobutane; 4: (S)-2-Chlorobutane 5: 6: 7: (2S,3R)-2,3-Dibromopentane; 8: (2R,3R)-2,3-Dibromopentane 9: (2E,5R)-5-Chloro-2-hexene; 10: (2Z,5S)-5-Chloro-2-hexene A-3. (a) Three; meso form is possible. (c) Four; no meso form possible. (b) Eight; no meso form possible. HO HO R S OH OH R R C (CH3)2C O (2 mol) 1. O3 2. H2O, Zn (CH3)2CHCCH3 CH3 Br B (CH3)2C C(CH3)2 C (CH3)2CHC CH2 CH3 A NaOCH2CH3 CH3CH2OH HBr HCl hydride shift Cl Cl Cl Cl 786 APPENDIX A Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
APPENDIX A 87 CH A-4.(a)cl. (b) HTH (c) CH H CH CH A-5. Chiral stereoisomers: CH H H CH (2S,3S)-2,3 (2R,3R)-23- Meso stereoisomer(achiral) H plane of symmetry indicated H CH neso-2.3-Dichlorobutane A-6.(a)[a]=-31 b)30%S CH A-7.(a) CH CH CH C Meso form (only stereoisomer) CHCOOH CH,CH3 A-8.(a)(2S,3S)-1, 3-Dibromo-2-chlorobutane (b(R)-1-Ethylcyclohex-2-en-l-ol Back Forward Main Menu TOC Study Guide Toc Student OLC MHHE Website
APPENDIX A 787 A-4. (a) (b) (c) A-5. Chiral stereoisomers: Meso stereoisomer (achiral); plane of symmetry indicated with dashed line A-6. (a) [] 31.2° (b) 30% S A-7. (a) (b) (c) A-8. (a) (2S,3S)-1,3-Dibromo-2-chlorobutane (b) (R)-1-Ethylcyclohex-2-en-1-ol CH3COOH O H H H3C CH2CH3 O H3C CH2CH3 H H O Cl C C 2 H H3C CH3 H Meso form (only stereoisomer) C C Cl H3C H CH3 Cl H CH3 CH3 CH3 CH3 CH3 CH3 CH3 Br CH3 CH3 Br HBr CH3 CH3 H H Cl Cl meso-2,3-Dichlorobutane and CH3 CH3 H Cl H Cl (2S,3S)-2,3- Dichlorobutane CH3 CH3 Cl H Cl H (2R,3R)-2,3- Dichlorobutane CH3 CH3 H H Br H CH3 CH3 HO H Cl H H Br H H CH3 CH3 Cl H H3C CH3 H OH C C Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
788 APPENDIX A A-9. Two:(2R, 3S)-2-bromo-3-chlorobutane and (2S,3S)-2-bromo-3-chlorobutane; they are di B-1.(c)B-2.(c)B-3.(b)B-4.(d) B-5.(b)B-6.(c)B-7.(d)B-8.(d) B-9.(b) B-1l.(d)B-12.(d) CHAPTER 8 C(CH3) A-1.(a) CH_CH, CH,CHOCH, CH3 H (c) CH CHCH_CH, H CHCI H3 A-2.(CH3),CHO Na CH CH,CH,Br CH A-3.(a) H OTs NaCN H CH,CH3 CHCH CH,CH CHCHCH H sO, CI CH, CH, CH H CH,CH,CH3 -OTs CHSS CH A-4. Step 1: lonization to form a secondary carbocation HC CI CH CHaC--CHCH3 CH- C-CHCH3 Cl CH3 Back Forward Main Menu TOC Study Guide Toc Student OLC MHHE Website
A-9. Two: (2R,3S)-2-bromo-3-chlorobutane and (2S,3S)-2-bromo-3-chlorobutane; they are diastereomers. A-10. B-1. (c) B-2. (c) B-3. (b) B-4. (d) B-5. (b) B-6. (c) B-7. (d) B-8. (d) B-9. (b) B-10. (c) B-11. (d) B-12. (d) B-13. (e) B-14. (b) CHAPTER 8 A-1. (a) CH3CH2CH2CH2OCH2CH3 (e) (b) ( f) (c) (g) (d) A-2. (CH3)2CHONa CH3CH2CH2Br A-3. (a) (b) A-4. Step 1: Ionization to form a secondary carbocation H3C CH3 CH3C CHCH3 Cl CH3 CH3 CH3C CHCH3 Cl H2O C H OH CH3CH2CH2 H3C C H OTs CH3CH2CH2 H3C pyridine H3C SO2Cl CH3S C H CH2CH2CH3 CH3 CH3S CH3 CH2CH3 H OTs CH3 CH2CH3 Br H CH3 CH2CH3 H CN NaBr DMSO NaCN CH3 CH2CH3 HS H F H CH3CHCH2CH2I CH3 CH3S H (X OTs, Br, I) X CH3 N3 C(CH3)3 OH Racemic mixture 788 APPENDIX A Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
APPENDIX A 789 Step 2: Rearrangement by methyl n to form a more stable tertiary carbocation CH, C-CHCH CH2C—CHCH CH CH Step 3: Capture of the carbocation by water, followed by deprotonation CH3 HO CHCH CHC—CHCH (CH3)2C--CH(CH3), CH CHOH A-5.(a)(CH3)3CBr (CH3)COCH SNl, unimolecular substitution; rate k[(CH3)3CBr SN2, bimolecular substitution; rate =k(C6HuClJ[NaN3 A-6. (a) Sodium iodide is soluble in acetone, whereas the byproduct of the reaction, sodium bromide, is not. According to Le Chatelier's principle, the reaction will shift in the direction that will replace the component removed from solution, in this case toward (b) Protic solvents such as water form hydrogen bonds to anionic nucleophiles, thus stabi lizing them and decreasing their nucleophilic strength Aprotic solvents such as dMsO do not solvate anions very strongly, leaving them more able to express their nucle- ophilic character o Na A-7. CHaCH,OH CHCH, BI HCC H3C OCH, CH t HOCHCH3 H C TOCH CH HC、OCH2CH2 Back Forward Main Menu TOC Study Guide Toc Student OLC MHHE Website
APPENDIX A 789 Step 2: Rearrangement by methyl migration to form a more stable tertiary carbocation Step 3: Capture of the carbocation by water, followed by deprotonation A-5. (a) SN1, unimolecular substitution; rate k[(CH3)3CBr] (b) SN2, bimolecular substitution; rate k[C6H11Cl][NaN3] A-6. (a) Sodium iodide is soluble in acetone, whereas the byproduct of the reaction, sodium bromide, is not. According to Le Chatelier’s principle, the reaction will shift in the direction that will replace the component removed from solution, in this case toward product. (b) Protic solvents such as water form hydrogen bonds to anionic nucleophiles, thus stabilizing them and decreasing their nucleophilic strength. Aprotic solvents such as DMSO do not solvate anions very strongly, leaving them more able to express their nucleophilic character. A-7. A-8. fast H H3C OCH2CH3 H H3C OCH2CH3 CH3 fast HOCH2CH3 H3C OCH2CH3 H H Br 3C CH3 slow OH CH3CH2OH A O Na B C CH3CH2Br D Cl N3 NaN3 CH3OH (CH3)3CBr (CH3)3COCH3 CH3 CH3 CH3C CHCH3 H2O H H2O CH3 CH3C CHCH3 OH (CH3)2C CH(CH3)2 CH3 CH3 CH3 CH3C CHCH3 CH3 CH3 CH3C CHCH3 Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website