3/10/2015 Materials Used in Tall Buildings Dr JiafeiJANG College of Civ Engineering Materials Used in Tall Buildings Higher height Larger bearing capacity Free space Higher requirement on material 本课件版权归作者所有,仅供个人学习使用,请勿转载。 1
3/10/2015 1 Materials Used in Tall Buildings Dr Jiafei JIANG Assistant Professor College of Civil Engineering Tongji University 2015/3/10 Higher height Materials Used in Tall Buildings Free space Larger bearing capacity Higher requirement on materials 本课件版权归作者所有,仅供个人学习使用,请勿转载
3/10/2015 Concrete Most widely used construction material *33 billion metric tons every year *73%of the tall buildings studied in the 2oo0s adopt a core+outrigger structural system.Of these approximately 5o%are constructed with concrete. (CTBUH) Core+outrigger OUTLINE Confined Concrete Mechanism-strength ductility √Application High Strength Concrete √Definition √Mechanism √Property Case Study Taipei101 本课件版权归作者所有,仅供个人学习使用,请勿转载。 2
3/10/2015 2 Most widely used construction material 33 billion metric tons every year Concrete Core+outrigger 73% of the tall buildings studied in the 2000s adopt a core+outrigger structural system. Of these approximately 50% are constructed with concrete. (CTBUH) Confined Concrete Mechanism‐strength & ductility Application High Strength Concrete Definition Mechanism Property Case Study Taipei 101 OUTLINE 本课件版权归作者所有,仅供个人学习使用,请勿转载
3/10/2015 1.Confined Concrete Confined Concrete *Reinforcement and concrete *Hoops/spirals t primary fle shlthemmthemterfthe xural reinforcing bars;b)omm. Why 本课件版权归作者所有,仅供个人学习使用,请勿转载。 3
3/10/2015 3 1. Confined Concrete Reinforcement and concrete Hoops/spirals In static design, the spacing of the hoops shall not exceed the smallest of a) the width of the section ; b) 15 times the diameter of the smallest primary flexural reinforcing bars; c) 400 mm. In seismic design, the spacing of the hoops in densified zone shall not exceed the smallest of a) 6 times the diameter of the smallest primary flexural reinforcing bars; b)100 mm. ‐JGJ 3‐ 2010 (Chinese Code) Confined Concrete Why ? 本课件版权归作者所有,仅供个人学习使用,请勿转载
3/10/2015 Confined Concrete -Mechanism Concrete in triaxial loading -Triaxial testing on cubes *Arbitrary loading path Complete failure surface Triaxial Loading System in DUT,China Willam-Warnke failure surface Confined Concrete -Mechanism *Concrete in triaxial loading --Hydro-pressure confinement testing on cylinder -Richart et al.1928(20 MPa s fs 50 MPa) fcc=f+4.1f Mohr-Coulomb Cirdle aan Ce 本课件版权归作者所有,仅供个人学习使用,请勿转载。 4
3/10/2015 4 Confined Concrete ‐Mechanism Concrete in triaxial loading ‐‐‐‐Triaxial testing on cubes Arbitrary loading path [1]Sun Y.P , He Z. J. Experimental investigation on strength and deformation of plain high‐strength high‐performance concrete under multiaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2008. 1 3 2 Triaxial Loading System in DUT, China [1] Willam‐Warnke failure surface Complete failure surface Confined Concrete ‐Mechanism [1] Richart F E, Brandtzaeg A, Brown R L. A study of the failure of concrete under combined compressive stresses[J]. 1928. cc c l f f f 4.1 Mohr–Coulomb Circle Triaxial Cell[1] c fl Concrete in triaxial loading ‐‐‐ Hydro‐pressure confinement testing on cylinder Richart et al. 1928 (20 MPa ≤ fc ≤ 50 MPa) 本课件版权归作者所有,仅供个人学习使用,请勿转载
3/10/2015 Confined Concrete -Mechanism T f= Confined Concrete -Strength *Arching action *Assumption: 1.2nd degree parabolas 2.Initial tangent slope of 45] Weak section-middle 国 pressure 本课件版权归作者所有,仅供个人学习使用,请勿转载。 5
3/10/2015 5 Confined Concrete ‐Mechanism c fl Rcor Tu=fsyAss1 Tu u sy ss1 l cor cor T f A f q R R ? l f Arching action Assumption: 1. 2nd degree parabolas 2. Initial tangent slope of 45°[1] Weak section‐ middle Confined Concrete ‐Strength [1] Mander, J. B.; Priestley, M. J. N.; and Park, R., “Theoretical Stress‐Strain Model for Confined Concrete,” J. Struct. Eng., ASCE, V.114, No. 8, 1988. q q Spacing Confinement pressure 本课件版权归作者所有,仅供个人学习使用,请勿转载