(二)Fick扩散第二方程的解aca℃D2axat1.高斯解。(1)扩散元素(总量M)沉积为一薄层,夹在2个极厚的全同试样间扩散0.5MX2/4DtC(x,t):e元DtV2)扩散元素沉积在试样表面x向一侧扩散时:初始-边界条件:t-0: x=0, C=8 :M-×2 /4DtC(x,t):ex±0. C=0。元Dtt≥0: x=±80 C=0;
(二) Fick扩散第二方程的解 1. 高斯解。 (1)扩散元素(总量M)沉积为一薄层, 夹在2个极厚的全同试样间扩散。 (2)扩散元素沉积在试样表面, 向一侧扩散时: 2 2 x C D t C = 初始-边界条件: t=0:x=0,C= ∞ ; x≠0,C=0 。 t≥0: x=±∞ C=0;
2误差函数解。无限长棒(扩散偶)或半无限长棒的扩散问题acC(1)无限长棒,初始条件:2ataxt=0: x>0, C=CiiC2>C1x<0, C=C2°C=C1C=C2浓度4边界条件为:C2x=+0 C=Ci;原始状态x=-00 C=C2C0距离xC1CxC2222~Dtdlerf(β)T误差函数erf (β)
(1)无限长棒,初始条件: t=0:x>0,C=C1; x<0,C=C2。 边界条件为: x=+∞ C=C1; x=-∞ C=C2 2. 误差函数解。 无限长棒(扩散偶)或半无限长棒的扩散问题。 2 2 x C D t C = 误差函数erf(β)
误差函数表235β01467890.00.00000.01130.02260.03380.04510.05640.06760.07890.09010.10130.10.11250.12360.13480.14390.15690.16800.17900.19000.20090.21180.20.22270.23350.24430.25500.26570.27630.28690.29740.30790.31830.30.32860.33890.34910.35930.37940.39920.36840.38930.40900.41870.40.42840.43800.44750.45690.46620.47550.48470.49370.50270.51170.50.52040.52920.53790.54650.55490.56330.57160.57980.58790.59790.60.60390.61170.61940.62700.63460.64200.64940.65660.66380.67080.70.68470.69140.69810.70470.71120.71750.72380.73000.73610.67780.80.74210.74800.73580.75950.76510.77070.77610.78640.78670.79180.90.79690.80190.81160.81630.82090.82540.82490.83420.80680.83851.00.84270.84680.85480.85860.86240.81680.85080.86610.86980.87331.10.88020.88350.88680.89000.89310.89610.89910.90200.90480.90761.20.91300.91550.91810.92050.92290.92520.92750.92970.93190.91031.30.94380.94730.93400.93610.93810.94000.94190.94560.94900.95071.40.95230.95390.95540.95690.95830.95970.96110.96240.96370.96491.50.96610.96730.96950.97260.97450.97550.96870.97060.97160.9736β1.551.61.651.71.751.81.92.02.22.70.97160.97630.98040.98380.98670.98910.99280.99530.99810.9999erf(β)
误差函数表 β 0 1 2 3 4 5 6 7 8 9 0.0 0.0000 0.0113 0.0226 0.0338 0.0451 0.0564 0.0676 0.0789 0.0901 0.1013 0.1 0.1125 0.1236 0.1348 0.1439 0.1569 0.1680 0.1790 0.1900 0.2009 0.2118 0.2 0.2227 0.2335 0.2443 0.2550 0.2657 0.2763 0.2869 0.2974 0.3079 0.3183 0.3 0.3286 0.3389 0.3491 0.3593 0.3684 0.3794 0.3893 0.3992 0.4090 0.4187 0.4 0.4284 0.4380 0.4475 0.4569 0.4662 0.4755 0.4847 0.4937 0.5027 0.5117 0.5 0.5204 0.5292 0.5379 0.5465 0.5549 0.5633 0.5716 0.5798 0.5879 0.5979 0.6 0.6039 0.6117 0.6194 0.6270 0.6346 0.6420 0.6494 0.6566 0.6638 0.6708 0.7 0.6778 0.6847 0.6914 0.6981 0.7047 0.7112 0.7175 0.7238 0.7300 0.7361 0.8 0.7421 0.7480 0.7358 0.7595 0.7651 0.7707 0.7761 0.7864 0.7867 0.7918 0.9 0.7969 0.8019 0.8068 0.8116 0.8163 0.8209 0.8254 0.8249 0.8342 0.8385 1.0 0.8427 0.8468 0.8508 0.8548 0.8586 0.8624 0.8661 0.8698 0.8733 0.8168 1.1 0.8802 0.8835 0.8868 0.8900 0.8931 0.8961 0.8991 0.9020 0.9048 0.9076 1.2 0.9103 0.9130 0.9155 0.9181 0.9205 0.9229 0.9252 0.9275 0.9297 0.9319 1.3 0.9340 0.9361 0.9381 0.9400 0.9419 0.9438 0.9456 0.9473 0.9490 0.9507 1.4 0.9523 0.9539 0.9554 0.9569 0.9583 0.9597 0.9611 0.9624 0.9637 0.9649 1.5 0.9661 0.9673 0.9687 0.9695 0.9706 0.9716 0.9726 0.9736 0.9745 0.9755 β 1.55 1.6 1.65 1.7 1.75 1.8 1.9 2.0 2.2 2.7 erf(β) 0.9716 0.9763 0.9804 0.9838 0.9867 0.9891 0.9928 0.9953 0.9981 0.9999
(2)半无限长棒,初始条件:t-0: x>0, C=Co;边界条件为:x=0,C=Cs;x=00 C=Co0XxC=Cs - (Cs- Co) erf (D
(2)半无限长棒,初始条件: t=0:x>0,C=C0; 边界条件为:x=0, C=Cs; x=∞ C=C0
扩散方程的误差函数解应用:例一:有一20钢齿轮气体渗碳,炉温为927℃,炉气氛使工件表面含碳量维持在0.9%C.这时碳在铁中的扩散系数为D=1.28x10-11m/s.计算为使距表面0.5mm处含碳量达到0.4%C所需要的时间?C=Cs - (Cs- Co) erf (D解:用半无限长棒的扩散来解0.5×10-30.4=0.9-(0.9-0.2)erf(2/1.28×10-11 .t69.8869.880.9-0.40.71340.755查表得到ert0.9-0.2(2 :23)t=8567s=143min=2.38hr
扩散方程的误差函数解应用: 例一:有一20钢齿轮气体渗碳,炉温为927℃,炉气氛使工件表 面含碳量维持在0.9%C,这时碳在铁中的扩散系数为 D=1.28x10-11m2/s, 计算为使距表面0.5mm处含碳量达到0.4%C 所需要的时间? 解:用半无限长棒的扩散来解