组合变影 2.叠加:对两个平面弯曲进行研究;然后将计算结果叠加起来
2.叠加:对两个平面弯曲进行研究;然后将计算结果叠加起来。 x y z Py Pz P Pz Py y z P j
COMBINED DEFORMATIONS Solution: 1. Resolve the external force along the centroid principal axis of inertia of the cross section P=Psin P=Pcos 2. Study the bending in two planes: Internal forces M.=P L-x)=P(L-x)sin =Msin h M=Coso h J L y 17
Py =Psinj P z =Pcosj Solution:1.Resolve the external force along the centroid principal axis of inertia of the cross section 2.Study the bending in two planes : Mz = Py (L − x) = P(L − x)sinj = M sinj M y =Mcosj ①Internal forces x y z Py Pz P Pz Py y z P j L m x m 17
组合变影 解:1.将外载沿横截面的形心主轴分解P=Bmp?o S 2.研究两个平面弯曲 ①M=P(L-x) 内 =P(L-x )sin 力 Isin M=COSO J y 18
解:1.将外载沿横截面的形心主轴分解 Py =Psinj P z =Pcosj 2.研究两个平面弯曲 j j sin ( )sin ( ) M P L x M P L x z y = = − = − M y =Mcosj ① 内 力 18 Pz Py y z P j
COMBINED DEFORMATIONS M MZ ② Stresses Stress due to M. Stress due to m.:o'= M y My SIn (p Resultant stress: 0=0+o"=-M(coSosin o x L P 19
cosj y y y I M I M z z ②Stresses =− =− sin j z z z I M I M y y = − = − ( cosj sin j) y z I y I z = + = −M + Stress due to My : Stress due to M z : Resultant stress: L Pz Py y z P x j y z Py Pz L P m x m 19
组合变影 应M引起的应力:M:M之 力 M2引起的应力: M_y Mysin( 合应力:o=o+o=M(cos+,sing) x x P
cosj y y y IM I M z z ② =− =− 应力 sinj z z z I M I M y y =− =− ( cosj sinj) y z Iy Iz = + =−M + My引起的应力: M z引起的应力: 合应力: 20 L Pz Py y z P x j yz Py Pz L P m x m