htt/www.cucdecom.cn中国高校课件下载中心 f一含x个体样方中出现频率 n一样方总数 Populations may be categorized as consisting of either unitary or modular organisms. In unitary populations, each zygote gives rise to a single individual. In modular organisms, the zygote develops into a unit of construction which gives rise to further modules and a branching structure The structure may then fragment producing many individual ramets 种群可以根据组成种群的生物是单体生物还是构件生物进行分类。在单体生物种群中,每 受精卵发育成一单个个体。在构件生物种群中,受精卵发育成一个结构单位,这一结构单位 再形成更多的构件和分支结构。然后这些结构可能分裂,形成许多无性系分株 The population size for unitary organisms, such as mammals, is simply the number of individuals in a given area. For modular organisms, such as plants and corals. The situation is more complex In this case the number of ' pieces'(ramets)or the number of shoots(modules) may give a more meaningful indication of abundance than the number of different individuals 种群大小 对于单体生物和种群如哺乳类,其种群大小就是一定区域内个体的数量,非常简单。对于构 件生物,如植物和珊瑚,情况就较复杂。对于这些种群,“断片”(无性系分株)或枝条(构 件)的数目比不同个体的数量更有意义代表多度。 Age and stage structure The age structure of a population is the number of individuals in each age class expressed as a ratio, and is usually displayed as an age pyramid diagram. A population which is neither expanding nor contracting will have a stationary age distribution. A growing population will have more young. While a declining population will be dominated by older age classes 年龄和时期结构 种群的年龄结构是每一年龄阶段个体数目的比率,通常以年龄金字塔图来表示。既不增长也 不下降的种群有稳定的年龄分布。增长型的种群有更多的年轻个体,而在下降型种群中年老 的个体占优势 繁殖后期 繁殖期 繁殖前期 图年龄锥体的三种基本类型(仿Qm A:增长型,B:稳定型,C:下降型种群 Where organisms pass through discrete growth stages (e.g. insect larval instars), the number of
http://www.cucdc.com.cn 中国高校课件下载中心 f—含 x 个体样方中出现频率 n—样方总数 Populations may be categorized as consisting of either unitary or modular organisms. In unitary populations, each zygote gives rise to a single individual. In modular organisms, the zygote develops into a unit of construction which gives rise to further modules and a branching structure. The structure may then fragment producing many individual ramets. 种群可以根据组成种群的生物是单体生物还是构件生物进行分类。在单体生物种群中,每一 受精卵发育成一单个个体。在构件生物种群中,受精卵发育成一个结构单位,这一结构单位 再形成更多的构件和分支结构。然后这些结构可能分裂,形成许多无性系分株。 Population size The population size for unitary organisms, such as mammals, is simply the number of individuals in a given area. For modular organisms, such as plants and corals. The situation is more complex. In this case the number of ‘pieces’ (ramets) or the number of shoots (modules) may give a more meaningful indication of abundance than the number of different individuals. 种群大小 对于单体生物和种群如哺乳类,其种群大小就是一定区域内个体的数量,非常简单。对于构 件生物,如植物和珊瑚,情况就较复杂。对于这些种群,“断片”(无性系分株)或枝条(构 件)的数目比不同个体的数量更有意义代表多度。 Age and stage structure The age structure of a population is the number of individuals in each age class expressed as a ratio, and is usually displayed as an age pyramid diagram. A population which is neither expanding nor contracting will have a stationary age distribution. A growing population will have more young. While a declining population will be dominated by older age classes. 年龄和时期结构 种群的年龄结构是每一年龄阶段个体数目的比率,通常以年龄金字塔图来表示。既不增长也 不下降的种群有稳定的年龄分布。增长型的种群有更多的年轻个体,而在下降型种群中年老 的个体占优势。 Where organisms pass through discrete growth stages (e.g. insect larval instars), the number of
htt/www.cucdecom.cn中国高校课件下载中心 individuals at each stage(the stage structure ) may provide a useful description of the population In species where growth rates are indeterminant(such as plants), size classes may be more informative 当种群经历离散和发育时期(如昆虫的龄期)时,每一时期个体的数目(“时期结构”)可以 对种群进行有效的描述。对于生长率无法预测的物种(如植物),根据大小分类可能更有意 义 NATALITY MORTALITY AND POPULATION GROWTH Natali Natality is the birth of new individuals. The realized natality is the actual successful reproduction per female over a period of time. The age-specific birthrate is the number of offspring produced per unit time by females in specific age classes 出生率 出生率就是新个体的产生,实际出生率就是一段时间内每个雌体实际的成功繁殖量。特定年 龄出生率就是特定年龄组内雌体在单位时间内产生的后代数量 mortalit The death rate, or mortality rate, is the number of individuals dying during a given time interval divided by the average population size over that time interval. This is an instantaneous rate and be estimated for the population as a whole or for specific age classes to give the age specifi mortality rate. The probability of dying is the number dying per individual present at the start of the time per 死亡率 死亡率是在一定时间段内死亡个体的数量除以该时间段内种群的平均大小。这是一个瞬时 率,可用来估价整个种群的死亡率或特定年龄群的特定年龄死亡率,死亡的概率是死亡个体 数除以在每一时间段开始时的个体数。 Survivorship Survivorship is the converse of mortality. Survivorship data are often shown as a survivorship curve for a particular population; a graph showing the proportion of survivors on a logarithmi scale through each phase of life 存活率 存活率是死亡率的倒数。对于一个特定种群,存活率的数据通常以存活曲线的形式来表示 存活曲线表示的是在每一个生活期存活个体所占的比率的对数值 There are three generalized patterns of age-specific survivorship depending on whether the probability of dying is highest later in life(Type I), constant through life(Type ID)or highest for young stages(Type Ill) 根据各种生活期死亡率的高低,特定年龄存活曲线一般有三种模式:后期死亡率最高(类型 1),各期死亡率相等(类型I,早期死亡率最高(类型Ⅲ Life table (1) Definition of life table (2)Types of life table (3) Excellences of life table 、生命表的定义 生命表是按种群生长的时间,或按种群的年龄(发育阶段)的程序编制的,系统记述 了种群的死亡或生存率和生殖率.是最清楚、最直接地展示种群死亡和存活过程的一览表. 最初用于人寿保险.对研究人口现象和人口的生命过程有重要的意义
http://www.cucdc.com.cn 中国高校课件下载中心 individuals at each stage (the ‘stage structure’) may provide a useful description of the population. In species where growth rates are indeterminant (such as plants), size classes may be more informative. 当种群经历离散和发育时期(如昆虫的龄期)时,每一时期个体的数目(“时期结构”)可以 对种群进行有效的描述。对于生长率无法预测的物种(如植物),根据大小分类可能更有意 义。 NATALITY, MORTALITY AND POPULATION GROWTH Natality Natality is the birth of new individuals. The realized natality is the actual successful reproduction per female over a period of time. The age-specific birthrate is the number of offspring produced per unit time by females in specific age classes. 出 生 率 出生率就是新个体的产生,实际出生率就是一段时间内每个雌体实际的成功繁殖量。特定年 龄出生率就是特定年龄组内雌体在单位时间内产生的后代数量。 mortality The death rate, or mortality rate, is the number of individuals dying during a given time interval divided by the average population size over that time interval. This is an instantaneous rate and be estimated for the population as a whole or for specific age classes to give the age specific mortality rate. The probability of dying is the number dying per individual present at the start of the time period. 死 亡 率 死亡率是在一定时间段内死亡个体的数量除以该时间段内种群的平均大小。这是一个瞬时 率,可用来估价整个种群的死亡率或特定年龄群的特定年龄死亡率,死亡的概率是死亡个体 数除以在每一时间段开始时的个体数。 Survivorship Survivorship is the converse of mortality. Survivorship data are often shown as a survivorship curve for a particular population; a graph showing the proportion of survivors on a logarithmic scale through each phase of life. 存 活 率 存活率是死亡率的倒数。对于一个特定种群,存活率的数据通常以存活曲线的形式来表示; 存活曲线表示的是在每一个生活期存活个体所占的比率的对数值。 There are three generalized patterns of age-specific survivorship depending on whether the probability of dying is highest later in life (Type I), constant through life (Type II) or highest for young stages (Type III). 根据各种生活期死亡率的高低,特定年龄存活曲线一般有三种模式:后期死亡率最高(类型 I),各期死亡率相等(类型 II),早期死亡率最高(类型 III)。 Life Table (1) Definition of life table (2) Types of life table (3) Excellences of life table 一、生命表的定义 生命表是按种群生长的时间,或按种群的年龄(发育阶段)的程序编制的,系统记述 了种群的死亡或生存率和生殖率. 是最清楚、最直接地展示种群死亡和存活过程的一览表. 最初用于人寿保险. 对研究人口现象和人口的生命过程有重要的意义
htt/www.cucdecom.cn中国高校课件下载中心 Dynamic and static life table Dynamic life tables summarize the fate of a group of individuals born at approximately the same time from birth to the end of the life cycle. Such a group is known as a cohort and investigation of this kind is termed cohort analysis. Static life tables summarize the age structure born at special 动态和静态生命表 动态生命表总结了一组出生时间大体相同的个体从出生到死亡的命运,这样的一组个体称为 同生群,这样的调査称为同生群分析。静态生命表根据某一特定时间对种群作一年龄结构调 查资料 综合生命表:增加出生率 生命表的主要优点 1.系统性:记录了从世代开始至结束 2.阶段性:记录各阶段的生存或生殖情况 3.综合性:记录了影响种群数量消长的各因素的作用状况 4.关键性:分析其关键因素找出主要因素和作用的主要阶段 Life tables show the number of individuals present at different life stages or ages together with age-specific survival rates and age-specific mortality rates calculated for each stage. Mortality at each stage is expressed by k-values which are derived from logarithms and can be summed to give tal mortalit 生命表表示存在于不同生命阶段或年龄个体的数量,以及每一阶段的年龄特定存活率和年龄 特定死亡率。每一阶段的死亡率用k值表示,k是通过对数函推导出来的,并且可以相加得 出总死亡率。 k-Factor analysis This technique allows the identification of key factors contributing to mortality. Stage-specific k-values obtained over successive years are compared to the values for total mortality (ktotal) K-Factor analysis highlights those stages suffering the greatest mortality which are responsible for fluctuations in loss rate and hence population size K因子分析 这一方法可以辩明关键因子对死亡率的作用。连续几年获得的特定阶段k值与总死亡率(k 总)相比。K因子分析强调那些死亡率最高的阶段,这些阶段是种群丧失率和种群大小波动 的关键 The fecundity schedule Fecundity is the number of eggs, seeds, or offspring in the first stage of the life cycle produced by an individual. The fecundity schedule allows the calculation of the basic reproductive rate ro This is the number of offspring produced per original individual by the end of the cohort In an annual population, it indicates the overall extent to which the population has increased or decreased over that time 生殖力表 生殖力是指同一个体生产的卵、种子或处于生活史第一阶段后代的数目。生殖力表可计算基 础生殖率R0。R0是在同生群结束时每个亲体产生后代的数量。在一年生种群中,R0表示 在这段时间内,种植增长或下降的总的程度 The changes in population size over time can be calculated by adding birth(B)and the number of immigrants(D)to the original population at time L, (Nt ) and subtracting the number of deaths (D)
http://www.cucdc.com.cn 中国高校课件下载中心 Dynamic and static life tables Dynamic life tables summarize the fate of a group of individuals born at approximately the same time from birth to the end of the life cycle. Such a group is known as a cohort and investigation of this kind is termed cohort analysis. Static life tables summarize the age structure born at special time. 动态和静态生命表 动态生命表总结了一组出生时间大体相同的个体从出生到死亡的命运,这样的一组个体称为 同生群,这样的调查称为同生群分析。静态生命表根据某一特定时间对种群作一年龄结构调 查资料 综合生命表:增加出生率 生命表的主要优点 1. 系统性: 记录了从世代开始至结束. 2. 阶段性: 记录各阶段的生存或生殖情况. 3. 综合性: 记录了影响种群数量消长的各因素的作用状况. 4. 关键性: 分析其关键因素,找出主要因素和作用的主要阶段. Life tables show the number of individuals present at different life stages or ages together with age-specific survival rates and age-specific mortality rates calculated for each stage. Mortality at each stage is expressed by k-values which are derived from logarithms and can be summed to give total mortality 生命表表示存在于不同生命阶段或年龄个体的数量,以及每一阶段的年龄特定存活率和年龄 特定死亡率。每一阶段的死亡率用 k 值表示,k 是通过对数函推导出来的,并且可以相加得 出总死亡率。 k-Factor analysis This technique allows the identification of key factors contributing to mortality. Stage-specific k-values obtained over successive years are compared to the values for total mortality (ktotal). K-Factor analysis highlights those stages suffering the greatest mortality which are responsible for fluctuations in loss rate and hence population size. K-因子分析 这一方法可以辩明关键因子对死亡率的作用。连续几年获得的特定阶段 k 值与总死亡率(k 总)相比。K 因子分析强调那些死亡率最高的阶段,这些阶段是种群丧失率和种群大小波动 的关键。 The fecundity schedule Fecundity is the number of eggs, seeds, or offspring in the first stage of the life cycle produced by an individual. The fecundity schedule allows the calculation of the basic reproductive rate R0. This is the number of offspring produced per original individual by the end of the cohort. In an annual population, it indicates the overall extent to which the population has increased or decreased over that time. 生殖力表 生殖力是指同一个体生产的卵、种子或处于生活史第一阶段后代的数目。生殖力表可计算基 础生殖率 R0。R0 是在同生群结束时每个亲体产生后代的数量。在一年生种群中,R0 表示 在这段时间内,种植增长或下降的总的程度。 population growth The changes in population size over time can be calculated by adding birth (B) and the number of immigrants (I)to the original population at time t, (Nt ), and subtracting the number of deaths (D)
htt/www.cucdecom.cn中国高校课件下载中心 and emigrants(E) to give a new population size an the time !+I(Nt+1). This is represented by the equation Nt+1= Nt +B+I-D-E 种群增长 种群大小随时间的变化可以按如下方法计算:t时间种群原来数量(Nt),加上新出生的个体 数(B)和迁入个体数(1),减去死亡个体数(D)和迁出的个体数(E),就可得到t+1时 间种群的数量(Nt+1),这可用以下方程表示 Nt+1= Nt+B+1-D-E For a particular set of conditions, an individual has a maximum potential for reproduction which its intrinsic natural rate of increase, r. This is the theoretical maximum that may be reached in a given environment if the population is not resource-limited 在一组特定条件下,一个体具有最大的生殖潜力,称为内禀自然增长率r。这是种群在不受 资源限制的情况下,于一定环境中可达到的理论最大值。 r=InRo/ (T-世代时间) 种群的增长模型 与密度无关的种群增长模型 与密度有关的种群增长模型 与密度无关的种群增长模型 种群在“无限”的环境中,即假定环境中的空间 食物等资源是无限的,则种群就能发挥内禀增长能 力,数量迅速增加 种群增长率不随种群本身的密度而变化,种群 呈指数增长格局 Density-independent population growth Unlimited growth of this kind is described by a continuous population model and expressed in terms of the rate of change in population numbers at time t Rate of change of population Size at time t= Intrinsic rate of increase x population size dN/dt=rN 非密度制约性种群增长 这种无限增长可用连续型种群模型来描述,以在t时间时,种群数量的变化率来表示: t时间种群大小的变化率=内禀增长率×种群大小 dN/dt=rN r>0种群上升;r=0种群稳定;r<0种群下降 与密度有关的种群增长模型 一、两点假设 (1)环境容纳量(K):环境条件所容纳的种群最大值 (2)增长率随密度上升而降低的变化,是成比例的。每一个体利用空间为1/K,N个体利 用N/K空间,剩余空间为1N/K 种群增长的S形曲线 开始期:群大小N很小,密度增长缓慢 加速期:随个体数增加,密度增长逐渐加快 转折期:当N=1/2K时,种群密度增长最快 减速期:当N>1/K时,密度增长逐渐变慢 饱和期:N=K,种群的增长为零,种群达到了一个稳定的大小不变的平衡状态
http://www.cucdc.com.cn 中国高校课件下载中心 and emigrants (E) to give a new population size an the time t+1(Nt+1). This is represented by the equation; N t+1 = N t +B + I – D – E 种群增长 种群大小随时间的变化可以按如下方法计算:t 时间种群原来数量(Nt),加上新出生的个体 数(B)和迁入个体数(I),减去死亡个体数(D)和迁出的个体数(E),就可得到 t+1 时 间种群的数量(N t+1),这可用以下方程表示。 N t+1= Nt +B + I – D – E For a particular set of conditions, an individual has a maximum potential for reproduction which is its intrinsic natural rate of increase, r. This is the theoretical maximum that may be reached in a given environment if the population is not resource-limited. 在一组特定条件下,一个体具有最大的生殖潜力,称为内禀自然增长率 r。这是种群在不受 资源限制的情况下,于一定环境中可达到的理论最大值。 r = lnR0/T (T – 世代时间) 种群的增长模型 与密度无关的种群增长模型 与密度有关的种群增长模型 与密度无关的种群增长模型 种群在“无限”的环境中,即假定环境中的空间、 食物等资源是无限的,则种群就能发挥内禀增长能 力,数量迅速增加 种群增长率不随种群本身的密度而变化,种群 呈指数增长格局 Density-independent population growth Unlimited growth of this kind is described by a continuous population model and expressed in terms of the rate of change in population numbers at time t: Rate of change of population Size at time t = Intrinsic rate of increase × population size dN/dt = rN 非密度制约性种群增长 这种无限增长可用连续型种群模型来描述,以在 t 时间时,种群数量的变化率来表示: t 时间种群大小的变化率=内禀增长率×种群大小 dN/dt = rN r>0 种群上升;r=0 种群稳定;r<0 种群下降 与密度有关的种群增长模型 一、两点假设 (1)环境容纳量(K):环境条件所容纳的种群最大值 (2)增长率随密度上升而降低的变化,是成比例的。每一个体利用空间为 1/K,N 个体利 用 N/K 空间,剩余空间为 1- N/K。 二、种群增长的 S 形曲线 开始期:群大小 N 很小,密度增长缓慢 加速期:随个体数增加,密度增长逐渐加快 转折期:当 N=1/2K 时,种群密度增长最快 减速期:当 N>1/2K 时,密度增长逐渐变慢 饱和期: N= K,种群的增长为零,种群达到了一个稳定的大小不变的平衡状态
htt/www.cucdecom.cn中国高校课件下载中心 四、逻辑斯谛方程 Density-dependent growth-the logistic equtation The logistic equation describes the growth of a simple population in a confined space, resources are not unlimited. In the early stages resources are abundant, the death rate is m and reproduction can take place as fast as possible allowing the individuals to attain their intrinsic rate of increase. The population increases geometrically until the maximum number of individuals the environment can sustainably support is approached. This maximum number is called the carrying capacity(K). The population growth rate declines to zero as the population becomes more crowded and the population size stabilizes 密度制约性种群增长: 逻辑斯谛方程 逻辑新谛方程描述的是一个在有限资源空间中的简单种群的增长。在早期,资源丰富,死亡 率最小,繁殖尽可能的快,种群内个体可达到内禀增长率。种群呈几何式增长,直到种群数 量达到环境可持续支持的最大程度,即环境容纳量(K)。当种群更加拥挤时,种群增长率 减少到零,种群大小处于稳定状态 This can be described as the logistic equation Rate of change of Intrinsic rate Population Population size at time t x factor Dn/dt=rN(I-N/K) Where the density-dependent factor, (1-N/K)approaches zero as the population approaches the carrying capacity and intraspecific competition becomes more intense. This equation predicts growth of a population over time to be sigmoidal, as is commonly observed in real populations 这可用逻辑斯谛方程来表示 T时间种群大小变化率=内禀增长率×种群大小×密度制约因子 dN/dt=rN(1-(N/K)) 当种群达到环境容纳量,种间竞争变得更激烈时,密度制约因子(1-(N/K)会接近零。该 方程预测种群的增长随时间变化呈现出“S”形,如在真实种群中通常所观察的那样。 五、重要意义 许多相互作用种群增长模型的基础 确定鱼业、林业、农业等领域的最大持续产量 r、K为生物进化对策理论中的重要概念 Equilibrium population density The equilibrium population density occurs when the per capita death rate exactly balances the pe capita birth rate such that the density is neither increasing nor decreasing. The equilibrium population density is equivalent to the carry ing capacity K 平衡种群密度 当单位个体出生率正好平衡单位个体死亡率,种群密度既不增加也不减少时,此时的种群密 度为平衡种群密度。平衡种群密度与环境容纳量K值相等 POPULATION DYNAMICS-FLUCTUATIONS AND CYCLES Expanding and contracting populations Most real populations are not at their constant equilibrium density for very long, but are dy namic and changing. Populations may be expanding or contracting because of changes in environmental conditions or because of changes to their biotic environment
http://www.cucdc.com.cn 中国高校课件下载中心 四、逻辑斯谛方程 Density-dependent growth-the logistic equtation The logistic equation describes the growth of a simple population in a confined space, where resources are not unlimited. In the early stages resources are abundant, the death rate is minimal and reproduction can take place as fast as possible allowing the individuals to attain their intrinsic rate of increase. The population increases geometrically until the maximum number of individuals the environment can sustainably support is approached. This maximum number is called the carrying capacity (K). The population growth rate declines to zero as the population becomes more crowded and the population size stabilizes. 密度制约性种群增长: 逻辑斯谛方程 逻辑新谛方程描述的是一个在有限资源空间中的简单种群的增长。在早期,资源丰富,死亡 率最小,繁殖尽可能的快,种群内个体可达到内禀增长率。种群呈几何式增长,直到种群数 量达到环境可持续支持的最大程度,即环境容纳量(K)。当种群更加拥挤时,种群增长率 减少到零,种群大小处于稳定状态。 This can be described as the logistic equation : Rate of change of Intrinsic rate Population Density dependent Population size at time t = of increase × size × factor Dn/dt=rN(1-N/K) Where the density-dependent factor, (1-N/K)approaches zero as the population approaches the carrying capacity and intraspecific competition becomes more intense. This equation predicts growth of a population over time to be sigmoidal, as is commonly observed in real populations. 这可用逻辑斯谛方程来表示: T 时间种群大小变化率=内禀增长率×种群大小×密度制约因子 dN/dt = rN(1 - (N/K)) 当种群达到环境容纳量,种间竞争变得更激烈时,密度制约因子(1 - (N/K))会接近零。该 方程预测种群的增长随时间变化呈现出“S”形,如在真实种群中通常所观察的那样。 五、重要意义 -许多相互作用种群增长模型的基础 -确定鱼业、林业、农业等领域的最大持续产量 -r、K 为生物进化对策理论中的重要概念 Equilibrium population density The equilibrium population density occurs when the per capita death rate exactly balances the per capita birth rate such that the density is neither increasing nor decreasing. The equilibrium population density is equivalent to the carrying capacity K. 平衡种群密度 当单位个体出生率正好平衡单位个体死亡率,种群密度既不增加也不减少时,此时的种群密 度为平衡种群密度。平衡种群密度与环境容纳量 K 值相等。 POPULATION DYNAMICS – FLUCTUATIONS AND CYCLES Expanding and contracting populations Most real populations are not at their constant equilibrium density for very long, but are dynamic and changing. Populations may be expanding or contracting because of changes in environmental conditions or because of changes to their biotic environment