6.3Rankine Vapor CyclePrinciple4in4-6Constantpressureheatadditionin a boilerBoiler6-1 to Superheat VaporWurb,out21-2 Isentropicexpansion inTurbineWpump.ina turbinePump22-3 ConstantpressureheatHoutrejectionin a condenserCondenser33-4Isentropiccompressioninapump
6.3 Rankine Vapor Cycle 4-6 Constant pressure heat addition in a boiler 6-1 to Superheat Vapor 1-2 Isentropic expansion in a turbine 2-3 Constant pressure heat rejection in a condenser 3-4 Isentropic compression in a pump S 4 6 1 2 3 Principle
6.3Rankine Vapor CycleSimpleSteamPowerPlantStack1ACombustiongasestostackEketrieTrbinetBodlerCvolingtiowerFuelCandemerPAir小小WamwaterPanpCoolodwaterMakeupwaterFeedwaterpump
6.3 Rankine Vapor Cycle
6.3Rankine Vapor Cyclepp1qin165BoilerP232Wqurb,outRTurbineWpump.inPump2AoutCondenserWturb.out35qin6?3qoutpump.in
S 4 6 1 2 3 T s 1 6 5 4 3 2 p v 1 5 6 4 3 2 p1 p2 6.3 Rankine Vapor Cycle
6.3Rankine Vapor CycleEfficiency4-5-6-1 Constant pressure heat addition in a boilerqi = h, -hy1-2 lsentropic expansion in a turbineWr =h, -h,2-3 Constant pressure heat rejection in a condenserq2 = h, -h;3-4 lsentropic compression in a pumpWip = hy - h3
4-5-6-1 Constant pressure heat addition in a boiler 1 1 4 q h h = − 1-2 Isentropic expansion in a turbine w h h tT 1 2 = − 2-3 Constant pressure heat rejection in a condenser 2 2 3 q h h = − 3-4 Isentropic compression in a pump w h h tP 4 3 = − 6.3 Rankine Vapor Cycle Efficiency
6.3Rankine Vapor CycleBecause of uncompressibility of waterWip = V(p4 P3)< WiTh, ~hsE,=0,E,=0-Wtp = qi - qz ~ h, - h, = WWTh, -hzW0nth, -h3q1
Because of uncompressibility of water ( ) w v p p w tP 4 3 tT = − 4 3 h h o tT tP 1 2 1 2 s o 1 2 t 1 1 3 w w w q q h h w w h h q h h = − = − − = − = − 0, 0 E E k p = = 6.3 Rankine Vapor Cycle