《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning(讲稿)
文件格式: PDF大小: 352.72KB页数: 23
《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning
文件格式: PDF大小: 240.91KB页数: 8
《人工智能、机器学习与大数据》课程教学资源(参考文献)Coherence functions for multicategory margin-based classification methods
文件格式: PDF大小: 182.42KB页数: 8
1 Introduction 2 Unsupervised Hashing 3 Supervised Hashing 4 Ranking-based Hashing 5 Multimodal Hashing 6 Deep Hashing 7 Quantization 8 Conclusion 9 Reference
文件格式: PDF大小: 10.7MB页数: 220
1 Introduction 2 Learning to Hash Isotropic Hashing Scalable Graph Hashing with Feature Transformation Supervised Hashing with Latent Factor Models Column Sampling based Discrete Supervised Hashing Deep Supervised Hashing with Pairwise Labels Supervised Multimodal Hashing with SCM Multiple-Bit Quantization 3 Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction Distributed Power-Law Graph Computing 4 Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent Distributed Stochastic ADMM for Matrix Factorization 5 Conclusion
文件格式: PDF大小: 6.4MB页数: 111
1 Introduction Problem Definition Existing Methods 2 Scalable Graph Hashing with Feature Transformation Motivation Model and Learning Experiment 3 Conclusion 4 Reference
文件格式: PDF大小: 2.63MB页数: 42
1 Introduction Problem Definition Existing Methods 2 Isotropic Hashing 3 Supervised Hashing with Latent Factor Model 4 Supervised Multimodal Hashing with SCM 5 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 6 Conclusion 7 Reference
文件格式: PDF大小: 2.47MB页数: 55
1 Introduction 2 Learning to Hash Isotropic Hashing Supervised Hashing with Latent Factor Models Supervised Multimodal Hashing with SCM Multiple-Bit Quantization 3 Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction Distributed Power-Law Graph Computing 4 Stochastic Learning Distributed Stochastic ADMM
文件格式: PDF大小: 5.05MB页数: 78
1 Introduction Problem Definition Existing Methods 2 Isotropic Hashing Model Learning Experiment 3 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 4 Conclusion 5 Reference
文件格式: PDF大小: 2.58MB页数: 58
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权