中国科学技术大学:《多元统计分析》课程教学资源(课件讲义)第一讲 简介及描述性统计(主讲:张伟平)
文件格式: PDF大小: 1.06MB页数: 44
《实用统计软件》课程教学资源(阅读材料)Dan Bruns, Chattanooga, TN, An Introduction to the Simplicity and Power of SAS/Graph
文件格式: PDF大小: 496.83KB页数: 19
1 Introduction 2 SAS Language 2.1 Proc Step and Data Step 2.2 SAS Logical Library 2.2.1 Access SAS file 2.2.2 View SAS library and file 3 SAS Programming 3.1 Reading data by DATA STEP 3.2 Output format 3.3 Manipulate datasets 3.3.1 SET statement 3.3.2 SORT proc 3.4 Logical statements 3.4.1 IF-THEN statement 3.4.2 SELECT-WHEN statement 3.4.3 DO-ENDS statement 3.4.4 DO-WHILE DO-UNTIL statement 3.5 OPERATIONS 4 Basic statistical analysis 4.1 Descriptive Statistics Proc 4.1.1 MEANS proc 4.1.2 SUMMARY proc 4.1.3 UNIVARIATE proc 4.1.4 TABULATE PROC 4.1.5 GCHART proc 4.1.6 GPLOT proc 4.2 INFERENTIAL Statistics 4.2.1 T-TEST 4.2.2 Chi-square tests 4.2.3 Correlation 4.2.4 Regression
文件格式: PDF大小: 651.07KB页数: 57
1 Programming 1.1 M file 1.1.1 Program Control Statements 1.1.2 M-File Functions 1.2 anonymous functions 2 Computational statistics with Matlab 2.1 Functions on Probability and Statistics 2.1.1 Probability distribution 2.1.2 Descriptive statistics 2.1.3 Statistical plotting 2.1.4 Linear model 2.1.5 Multivariate Statistics 2.2 Monte Carlo with Matlab 2.2.1 Monte Carlo Assessment of Hypothesis Testing 2.2.2 MCMC with matlab 3 Symbolic computation with matlab 3.1 Creating Symbolic Variables and Expressions 3.2 Calculus 4 Optimization 4.1 Unconstrained Minimization Example 4.2 Nonlinear Inequality Constrained Example
文件格式: PDF大小: 479.22KB页数: 47
1 Introduction 1.1 GUI and Basic functions 1.1.1 Command Window 1.1.2 Command History 1.1.3 MatLab Help 2 Data in MatLab 2.1 Manipulating data 2.1.1 Creating Objects 2.1.2 Operators 3 Graphics 3.1 Use plotting tools 3.2 Use the command interface 3.2.1 Basic plots 3.2.2 Adding Plots to an Existing Graph 3.2.3 Multiple Plots in One Figure 3.2.4 Controlling the Axes 3.2.5 Axis Labels and Titles 3.3 Mesh and Surface Plots 3.4 Creating Specialized Plots 3.5 Advanced plotting
文件格式: PDF大小: 684.41KB页数: 56
1 Numerical optimization methods in R 1.1 Root-finding in one dimension 1.1.1 Bisection method 1.1.2 Brent’s method 1.1.3 Newton’s method 1.1.4 Fisher scoring 1.2 multivariate optimization 1.2.1 Newton’s method and Fisher scoring 1.3 Numerical Integration 1.4 Maximum Likelihood Problems 1.5 Optimization Problems 1.5.1 One-dimension Optimization 1.5.2 multi-dimensional Optimization 1.6 Linear Programming
文件格式: PDF大小: 573.93KB页数: 41
1 EM optimization method 1.1 EM algorithm 1.2 Convergence 1.3 Usage in exponential families 1.4 Usage in finite normal mixtures 1.5 Variance estimation 1.5.1 Louis method 1.5.2 SEM algorithm 1.5.3 Bootstrap method 1.5.4 Empirical Information 1.6 EM Variants 1.6.1 Improving the E step 1.6.2 Improving the M step 1.7 Pros and Cons
文件格式: PDF大小: 628.39KB页数: 44
1 Markov Chain Monte Carlo Methods 1.4 The Gibbs Sampler 1.4.1 The Slice Gibbs Sampler 1.5 Monitoring Convergence 1.5.1 Convergence diagnostics plots 1.5.2 Monte Carlo Error 1.5.3 The Gelman-Rubin Method 1.6 WinBUGS Introduction 1.6.1 Building Bayesian models in WinBUGS 1.6.2 Model specification in WinBUGS 1.6.3 Data and initial value specification 1.6.4 Compiling model and simulating values
文件格式: PDF大小: 652.5KB页数: 54
《实用统计软件》课程教学资源(阅读材料)A History of Markov Chain Monte Carlo——Subjective Recollections from Incomplete Data
文件格式: PDF大小: 235.64KB页数: 27
1 Markov Chain Monte Carlo Methods 1.1 Introduction 1.1.1 Integration problems in Bayesian inference 1.1.2 Markov Chain Monte Carlo Integration 1.1.3 Markov Chain 1.2 The Metropolis-Hastings Algorithm 1.2.1 Metropolis-Hastings Sampler 1.2.2 The Metropolis Sampler 1.2.3 Random Walk Metropolis 1.2.4 The Independence Sampler 1.3 Single-component Metropolis Hastings Algorithms 1.4 Application: Logistic regression
文件格式: PDF大小: 699.21KB页数: 53
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权