Fibonacci number = 1+√5 0=1-v6 2 2 -店(-)
Fibonacci number = 1 + 5 2 ˆ = 1 ⇥5 2 Fn = 1 ⇥5 n ˆ n ⇥
2 3 11 8 5 1 1/0 91 1 1/03 (0
(Fn-1+Fn-2 i fn≥2, generating function: Fn 1 if n=1 G(2)=>Fn.am 0 if n =0. m>0 recursion: G()=F+Fx+∑Fn”=x+∑Fn-1x”+∑Fn-2xn m>2 m>2 m>2 ∑F-1xn=∑n-1x”=∑ Fnxn+1 =xG(c) m≥2 m>1 m≥0 ∑Fn-2n=∑Fnxn+2=x2G() n≥2 m>0 identity: G(c)=x+(+x2)G(x)
n2 Fn1xn + n2 Fn2xn Fn = ⌅⇤ ⌅⇥ Fn1 + Fn2 if n 2, 1 if n = 1 0 if n = 0. generating function: G(x) = n0 Fnxn G(x) = F0 + F1x + n2 Fnxn = x+ = n0 Fnxn+1 = n0 Fnxn+2 n2 Fn2xn = x2G(x) = xG(x) G(x) = x + (x + x2)G(x) recursion: identity: n2 Fn1xn = n1 Fn1xn
(Fn-1+Fn-2 fn≥2, generating function: Fn 1 ifn =1 G()=>Fnan 0 if n =0. n>0 identity: G(x)=x+(x+x2)G(x) T solution: G()=1-x-x2 =Taylor denote 0= 1+5 6= 1-5 2 2 T 1 1 1 1 1-x-x2 V5'1-V51-0x
Fn = ⌅⇤ ⌅⇥ Fn1 + Fn2 if n 2, 1 if n = 1 0 if n = 0. generating function: G(x) = n0 Fnxn G(x) = x + (x + x2 identity: )G(x) G(x) = x 1 x x2 solution: Taylor ? = 1 + 5 2 ˆ = 1 5 2 x 1 x x2 = 1 5 · 1 1 x 1 5 · 1 1 ˆ x denote =?
(Fn-1+Fn-2 fn≥2, generating function: Fn 1 ifn =1 G(c)=Fnx” 0 if n=0. m>0 identity: G(x)=x+(x+x2)G(z) solution: G(x)= 1-x-x2 1 1 1 1 V51-r-V51-a 店r-店∑ m>( n>0 =后(-) n>
Fn = ⌅⇤ ⌅⇥ Fn1 + Fn2 if n 2, 1 if n = 1 0 if n = 0. generating function: G(x) = n0 Fnxn G(x) = x + (x + x2 identity: )G(x) G(x) = x 1 x x2 solution: = 1 5 n0 (x) n 1 5 n0 ( ˆ x) n = n0 1 5 n ˆ n xn = 1 5 · 1 1 x 1 5 · 1 1 ˆ x