F ITTING THE MODEL · BIG TRADE-FFB∈ TWEEN 兵 CCURACY E5E0FS。LTN DEGREE OF USER INPUT REQUIRED? △6E5 THE PRocEss ALWAYs woRK? NALI DATIoN PREOICTION AND SIMULATION DIFFERE NT DATA SETS TIME FRE& DOMAIN ANALysIS OF THE ERRoR STOCHA6Tw升LYsS0F佣ERE510 uAL ERRoR D0EsR∈ SULT IMPLY THAT山SH0L0MRE CHANGES To: MODEL CHOICE ( ORDER,WP∈…) EXPT (INPUT SEQVENCE 0B5∈crv∈FNf0RFT ∪AL(0ATEA0 FFERENT DAT升mHA7 HAT USED To MAKE THE MopEL
LECTURE世5 Ezl TRANSFER FUACTIONS ETFE+PRf∈RTEs SMoOTHING ∈ XAMPLE L63,5.2,b4,6.5,6.6 Copyright 1999 by Professor Jonathan How. DATA 千 RANS FER FUNCTION EST I MATE TME DOMAIN CURVE 工 NSIGHTS FT心G R工 TERATE!
LECTURE 5 ME ASPECTs0F0sR∈T∈LM∈m SYSTEM DYNAMICS IMPUSE RESPONSE MODE LING/ESTIMATIoN DIScRETE STATE SPACE SYSTEMS SYSTEM REALIzATIo THEDRy
⊥ NEAR SYST∈As 0ua0AT井 WILL TYPICALLY& E COLLECT∈0 FRoM只 EAL SY5TEMS 015CQET∈0ATA DISCRETE AODELS ·C0S(0ERT1SSC∈AARD: G yt T RESPONSE GIVEN8¥ K INTEGER Y(K CONVOLUTON INTEGRAL )(t-y) TYPICALLy AsSUME THAT (T)=o y ro g(r)DEfINES THE CAUSAL RELATIONSHIf 6ET心ETHe工NPUT0(+)400rPT9) CALLED THE IMPULSE RESPONSE COULD MODEL THE SYSTEM VERY WELL 工 F WE COULD FIND9比t)
ONE PROBLEM: MUST WoRK IN DISCRETETIME SLIGHTL-Y0 FFERENT工 uPULS日 RESPONSE SAMPLE REsPo心sEAT△ SCRETE TIMES七=kT KT= 3(n)以(KT-T) T0 SIMPLIfY AN升LYss,升550 ME THAT THE工Puru(t) Ts PlECE-川 ISE COWSTAAT (OUPUT of ult)APPLIEO TO A zoH →以(七)以K甘 kT么七<(K+)T NOT ALWAYS VALID MT NoW GET CKT)= 2 T)以(kTT)中 (M-T CONSTANT R K T alr)dy 工 MPVLSE RE5oNsE m-小)T F A SAMPLED-DATA SYST∈M CAN WE MEASURE THIS DIRECTLY